

Trinity University LIBFARY, S, N......a.... S. H1...........No.

DIARY

OF Δ
MAGNETIC SURVEY

LONDON : PRINTED BY
FPOTTIRWOODE AND CO., NEW-STREET SQUARE
AND PARIIAMENT STREET

DIARY
 OF A

MAGNETIC SURVEY

OF A PORTION OF THE

DOMINION OF CANADA CHIEFLY IN THE

NORTH-WESTERN TERRITORIES

```
ENECUTED IN THE YEARS 1842-1844
```

general Sir J. h. Lefroy, c.b., K.c.m.G., F.r.S., \&c.

> WITH MAPS

LONDON

LONGMANS, GREEN, AND CO.

$$
\begin{aligned}
& Q C \\
& 825 \\
& 11 \\
& L 5
\end{aligned}
$$

PREFACE.

1. The renewed attention directed to the distribution and periodical changes of the Earth's Magnetism in the North Polar region, suggests an endeavour on my part to present the observations of my Magnetical Survey of 1843-4 with fuller explanation, and in a form more convenient for reference than that in which they were originally published. ${ }^{1}$ It is true that they did not actually enter the Arctic Circle, but they touched the confines of it at Fort Good Hope, on Mackenzie's River, and being still the principal authority for the received position of the focus or pole of greatest magnetic intensity, as well as for the lines of equal magnetic force, equal inclination, and equal variation, over a large part of the continent of North America, it is certain that whenever they come to be repeated, the Observer of the future will inquire for particulars not contained in, and not suitable for, the 'Philosophical Transactions.'

I have gone into many details which may seem to some persons unnecessary ; similar information respecting the personal experience of previous observers would, however, have been of much use to me, and I do not think that they will be found superflnous by any future American traveller who may give his attention to the same subject.
2. The following letters and minutes of the Council of the Royal Society show in what manner this particular survey originated, and what were the riews of its author, the late General Sir Edward Sabine, R.A.

[^0]
Correspondence relating to the Magnetic Survey of the British Possessions in North America.

January 7, 1841.-Letters were read from Major Sabine to Sir John Herschel, Chairman of the Committee of Physics, on the subject of a Magnetic Survey of the British possessions in North America, and also letters on the same subject from Sir John Herschel, Dr. Peacock, Sir Hew Ross, Deputy Adjutant-General of the Royal Artillery, and Lieut. Riddell, R.A., Director of the Magnetic Observatory at Toronto, in Canada.

- Resolved,-That these letters be laid before the Council, with a strong recommendation from this Committee, that the President and Council will take the proper steps to recommend to the Government the execution of the proposed survey.'

Letters.

' London, Nurember 2 2., 1840.
(1). 'My dear Sir,-It is quite unnecessary that I should make any preliminary remarks on the importance of a Magnetic Survey of the British possessions in North America to you, who have yourself, in the "Quarterly lieview," placed in so clear a light the value of such surveys in general, and of the one in question in particular; nor need I dwell on the advantages of making the survey whilst there is a magnetic observatory in Canala, to serve as a primary station for reference and comparison.

- The object of my present letter is to propose a definite plan for its performance, which I address to you, as Chairman of the Committee of Physics of the Royal Society, in which the details might be beneficially discussed, and from whence its recommendation might with propriety emanate.
' 1 . The strength of the Canadian observatory to be increased by one officer and one non-commissioned officer for three years; and an addition to be made to the instruments of

One inclination instrument with two dipping and two intensity needles.
One transportable magnetometer with unifilar and bifilar suspensions. One sextant and artificial horizon.
Two portable stands.
' 2 . I have ascertained by personal commmication with the Chairman of the Hudson's Bay Company, that for a pablic undertaking of this nature, the Company is really to fumish gratuitous canoe conveyance in the territories belonging to them; and from inquiries that I have made I have reason to believe that two summers thens oceupied would supply ample materials for the countries north of the Canadian provinces, within limits of convenient access. For excursions within the Canadian provinces,
and for other small contingent expenses, I consider that $50 l$. a year for each of the three years would be sufficient, which should be payable in the same manner as the observatory contingent allowance, on the certificate of the Director of the Observatory.
' 3. Lieut. Younghusband, of the Royal Artillery, has been acting for some months, with the permission of the Master-General of the Ordnance, as a gratuitous assistant to Lieut. Riddell at the Toronto Observatory, with a view of qualifying limself for this undertaking. The zeal he has evidenced, and the very favourable manner in which Lieut. Riddell speaks of him in all respects, show him to be a highly eligible person, and his presence on the spot is an advantage in saving the expense of a passage to Canada.
'4. The whole expenditure contemplated for this undertaking would be nearly as follows:-

For instruments	$£ 130$			
One officer's extra pay, annual	1183	For 3	ars	£549
$\left.\begin{array}{c}\text { One non-commissioned } \\ \text { officer's extra pay } .\end{array}\right\}$	27	,	"	81
Contingent . . ,	50	,	"	150
				780
	Instrum	ents		130
	Total			9910

Total 910l. in three years, or in round numbers 300l. a year for three years.

> - Believe me, \&c.

- Edivard Sabine.
'Sir John Herschel, Bart.'
- Collingwood, November 27, 1840.
(2). 'Dear Str,-As regards the proposition in your letter, as you have therein connected my name with my opinions as stated in the "Quarterly Review " (to which I do not in the least object, as it was never my desire or wish to regard that article as anonymous, and as there is now an obvious reason for avowing it), in which I have distinctly advocated the very point in question, and supported it by arguments to which I can add nothing either in the way of novelty or force, but mere reiteration, I could not, in fact, by my personal attendance do more than I have already done. Only I may add, that I have as yet seen no ground to weaken that opinion, but that on the contrary, the more I reflect on the desirableness of procuring Magnetic Surveys of the Colonies, the more apparent it seems.
' The programme of the operation as regards the personal and material, as stated in your proposal, appears perfectly calculated to meet the requisites of the case, and I hare no hesitation in convering through you to
the Committee my own entire approbation and concurrence in its coming before the Council, recommended by them as a proper object for application to Government. In the recommendation of such objects for public support, the Royal Society is only performing its duty to the country and to science. It is for the Government to decide what portion of the national resources can be afforded for scientific purposes. All that we have to look to is that the objects we do recommend be really great and worthy ones, and that the means we propose be well adapted to the end.
- Believe me, \&c.
- J. F. W. Herschel.
' Major Samines.'
' Woolwich, Norember 26, 1840.
(3). 'My dear Sabine,- I do not see the least objection to the employment of Lieut. Younghusband and a non-commissioned officer of the Artillery to assist in carrying out the Magnetic Survey in British North America, should your proposal receive the sanction of the MasterGeneral. Lieut. Younghusband is a very promising officer, and I shall be very glad if he is permitted to continue on the service on which he is now employed.
- Believe me, \&c.
' Hew Ross.
- Major Sabine, \&c.'
- Toronto, November 25, 1840.
(4). ' I write a few lines to thank you for your proposals as to the survey of this part of the world. They embrace, I think, all that can be wished for, or required from the Government, i.e.-

1. Lieut. Younghusband and an additional gunner to be attached to the observatory for three years.
2. Instruments to be furnished, value $130 l$.
3. $50 l$. a year for three years on contingent account for travelling expenses.
4. An arrangement to be made with the Hudson's Bay Company to convey an officer and assistant on two summer trips, or three if necessary.
'C. J. B. Piddell.'

Minute of Council.

(5). Jan. 7, 1841.-Tesolved,-That the recommendation of the Committee of Physics contained in this resolution be adopted, and that the President be requested to confer with the Chancellor of the Exchequer and the Master-General of the Ordnance on the subject.
3. The Marquis of Northampton, President of the Royal Society, wrote accordingly to the Treasury on January 10, 1841, and their Lordships agreed to meet the estimated expense amounting to $910 l$., with the understanding that, as stated by him, gratuitous canoe conveyance would be provided by the Hudson's Bay Company in the territories belonging to them. ${ }^{1}$
4. The foregoing plans, however, were not exactly carried out. Lieutenant, now Major-General, C. J. B. Riddell, C.B., was invalided home from Canada in 1841, and became Major Sabine's assistant; Lieutenant, now Lieutenant-General, C. Younghusband, C.B., then serving in Canada, was placed in temporary charge of the observatory at Toronto; and the permanent charge, with the magnetic survey annexed, was offered to me. Leaving St. Helena in February 1842, I returned to England. Part of the following month of June was passed with the late Mr. Robert Weare Fox at his residence at Penjerrick, near Falmouth, for purposes of instruction in the manipulation of his Dip circle, and I left England for Canada on July 20, in the Prince Regent transport, which took forty-two days to reach Quebec. The Magnetic Variation and the Dip were observed daily on the voyage. The latter also on the voyage in the Northumberland, Indiaman, from St. Helena to England. ${ }^{2}$

In making the offer, in 1841, of 'gratuitous canoe conveyance' (ante, p. ri), the Hudson's Bay Company had no idea of saddling itself with a heary expense. The understanding come to between the then Gorernor of the Company and Lieut.-Colonel Sabine, the one knowing little of the requirements of a scientific traveller and the other even less of the peculiar system of the Company's internal communications, prored to involve on both sides a great deal of misunderstanding, as shortly appeared by the subjoined letter of instructions issued by Sir George Simpson, who arrived at Montreal in April, to the Company's officers. In it he directed accounts to be opened and expenses to be charged against the Royal Society. The Council had not anticipated or provided for any such charges,

[^1]and when about two years later a bill amounting to 1,277 l. was presented, which did not include any charge for my personal entertainment, a difficulty occurred over it. When these instructions were communicated to me, I lost no time in calling Lieut.-Colonel Sabine's attention to the subject, and then dismissed it from my mind. The justice of the claim was ultimately admitted, and a Treasury grant was made which satisfied the Company.

5. Letter froa Mr. Trevelyan, addressed to the President of the Royal Society.
 'Treasury Chambers, November 13, 1847.

' My Lord, —The Lords Commissioners of Her Majesty's Treasury having had before them the memorial and documents enclosed in your Lordship's letter of the 30th ultimo, relating to the charges of the Hudson's Bay Company in regard to the Magnetic Survey in North America :
' I am commanded to state to your Lordship that My Lords regret the misunderstanding which has occurred in regard to the expense of this expedition.
' In the paper transmitted with your Lordship's letter of the 10th January, 1841, it was distinctly stated that the whole expenditure contemplated for the undertaking was 910l., and that gratuitous canoe conveyance would be provided by the Hudson's Bay Company in the territories belonging to them.
' Upon this statement the consent of this Board was given to the proposed expenditure, and My Lords were by no means prepared for the present demand upon the public purse, amounting to a further sum of 1,277l. $3 s$. $5 d$.
'It appears, however, that the greater part of this expense has been occasioned by a departure from the original plan of the expedition, and that the extension of the survey has been of considerable value and importance in a national point of view, and it might be reasonably expected that the Government should reimburse to the Hudson's Bay Company the expenses incurred by them beyond the amount originally contemplated. There is some difficulty in ascertaining the exact amount of the extra expense incurred, but it would appear from Capt. Lefroy's statement that it camot have amounted to the whole sum mentioned, viz. 1,277l. 3s. 5d .
' Upon fully considering the whole of the correspondence, My Lords are of opinion that $850 l$. will reimburse to the Company all the expenses on account of which they may have a claim upon the public, and My Lords will in the ensuing Session submit an estimate to Parliament for this amount.
'In addition to this sum of 8jol. there is a charge for clothing, \&e.
supplied to Captain Lefroy, which that gentleman will repay to the Company through his agents, making the whole amount to be replaced to the funds of the Hudson's Bay Company on this account 885l. $5 s$.
' I have the honour to be, \&c.
'C. N. Trevelyan.'
'The President of the Royal Society,
Somerset IItouse.'
6. The proverbial saying Les absents ont toujours tort, was exemplified on this occasion ; the 'departure from the original plan of the expedition' was supposed to be due to the zeal, meritorious perhaps, but indiscreet, of the executive officer, and the fact that every step was authorised and approved did not receive the prominence which he thought that justice required. The following extract from a letter from Lieut.-Colonel Sabine's assistant traces the misunderstanding to its source.

- Woolwich, March 3, 1815.
' Your early letters, en routc outwards, mentioned that Sir George Simpson had directed the expenses of the Survey to be charged to a separate account to the Royal Society. This Colonel Sabine and I talked over at the time ; but it appeared so impossible after the correspondence that had passed (vide the printed letters of the R. S., in which the word "gratuitous" was most directly and pointedly introduced) that any misunderstanding could exist, more especially as Sabine said he was sure that Sir H. Pelly had not viewed it in that light, that he and I both thought that it was with a view merely to the regulation of their accounts, and that they might be kept aware themselves, and, if necessary, show to others the expense their liberality in the canse of science had put them to.'

7. Circular Letter of Instructions.

- Lachine, near Montreal, A pril 26, 1843.

To the Gientlemen in charge of Districts and Posts in the service of The Hon. Hudson's Bay Company.
' Gentlemen, —This will be handed to you by J. H. Lefroy, Esq., of the Royal Artillery, who, under the direction of Her Majesty's Government and of the Royal Society, proceeds to the interior for the purpose of making Magnetical Observations; and I have to beg that every facility and assistance he may require, and which the circumstances of the country and service may admit, be afforded him towards the accomplishment of the important and interesting object of his mission.
'Mr. Lefroy takes his passage, accompanied by a servant, ${ }^{1}$ by the brigade for the Northern department, to start in the course of a few days hence, and Mr. J. McLean, the gentleman in charge of that brigade, is hereby instructed to afford two hours a day for Magnetical Observations; four hours at each post, and twenty-four hours commencing from midday on the 26th May and 21st June.
'Should Mr. Lefroy require the assistance of any of the Company's servants for the purpose of conveying him from post to post, or on any other duty connected with his mission, they are to be placed at his disposal, with such craft and appointments as may be necessary; and his demands in clothing and other supplies may be complied with, for which receipts are to be taken from him at each post, and an account opened with the Royal Society, to which will be charged the wages of such serrants and the prices of craft, appointments, clothing, \&c., \&c.
' It is to be understood that Mr. Lefroy is to be at liberty to proceed to any part of the country he may desire, and to make such stay at the different posts as he may determine upon; and strongly recommending that gentleman to your kindest personal civilities and attention,
' I remain, \&c.
' (Signed) Geo. Simpson.'
8. In one particular, at all events, there was no misunderstanding. The kindness of the personal civilities and attentions I received during a stay of eighteen months in the interior did the fullest justice to Sir George Simpson's introduction, and left an impression which lapse of time has not effaced. I was so fortunate as to find at Fort Chipewyan the remains of a library formed by officers of the then extinct North-west Company for their Northern department, comprising many sound books of history and general literature. In the genial society of the late Mr. Colin Campbell, and with the company of a young Canadian clerk, Mr. Dyke Bouchier, I passed a winter there in much comfort, fully employed, and greatly interested in the daily novelties of the fur-trader's mode of life. And here I must say a word on the sterling qualities of my assistant, Corporal William Henry, R.A., then a young soldier, who lived to reach the rank of Colonel on retirement from the army, and who shared the fatigue of daily and nightly observation with a zeal, a cheerfulness, and a strict discharge of duty, which were all that I could wish. Of like quality were the artillery soldiers who accom-

[^2]panied Sir George Back a few years previously, and of like quality, I doubt not, will be found those who at this moment are assisting Captain Dawson, R.A., in very similar duty at Fort Rae. The ranks of the army can at all times furnish men fit for special services of this nature, and their employment is much to be encouraged, as maintaining the diversified experience, the high standard of intelligence, and the activity of mind, which now enter more than ever into military efficiency.
9. The winter observations laving been fully published, it has not been necessary to incorporate them in the present report. They were, I believe, the first which proved the diumal periodicity of the aurora borealis.

Auroras recorded. ${ }^{1}$

	No.	Brilliancy			No.	Brilliancy
6 р.м.	1	1	1	A.M.	36	48
7 .,	8	$10 \cdot 5$	2	"	21	18
8 ,	14	$18 \cdot 0$	3	"	18	26
9 -	17	$16 \cdot 0$	4	"	13	22
10 "	19	$18 \cdot 0$	5	"	12	15
11 ,	23	$24 \cdot 0$	6	,	3	$2 \cdot 5$
Midn.	32	$39 \cdot 0$				

The second column-gives the total number of times at which aurora was visible at each hour of the night, and the third gives the sum of numbers assigned on a comparative scale for their estimated brilliancy. Their effect on the magnetic elements is discussed in the work cited below. I have pleasure in inserting the subjoined extract from a letter addressed not long since to Mr. Robert Scott, F.R.S., by one of the observers of the Swedish

[^3]expedition to Spitzbergen, which he has kindly communicated to me, to show that the intention, always entertained, that I should devote the winter to observation with the new transportable magnetometers, was justified by the value of the results, which will be more apparent as other stations in high latitudes become arailable for comparison. The late Sir John Richardson had not the satisfaction of seeing his labours thus utilised, but the appreciation of M . Wykander was acknowledged by his widow in terms of lively gratitude and pleasure.

10. Extract fron a Letter addressed by M. Wykander, of the Swedish Spitzbergen Expedition, to Robert Scott, Esq., F.R.S.

' Lund, Dec. 15, 1877.
' It is but some days ago that I got from the University Library the copy of " Magnetical and Meteorological Observations at Lake Athabasca and Fort Simpson, and at Fort Confidence," which you had the kindness to promise me in your letter of the 16 th of March. I thank you most sincerely for it; and though the treatise with which I was occupying myself last winter is already printed, that work now allowed me to make a most interesting comparison. I enjoyed reading it so much the more, because the rich materials collected in it confirm fully the conclusions which I had drawn from the Swedish observations, and because many of the opinions pronounced by its authors are in accordance with mine.

- The three places mentioned above have in magnetical respects a situation so resembling that of Spitzbergen-inasmuch as they all have about the same inclination, \&c.-as to make it quite natural that the results were to present many analogies. As, therefore, Captain Lefroy has expressly pointed out the importance of the fact that the eastern perturbations of the declination appear in the morning hours, and as he has repeatedly seen the disturbances exhibiting a direction contrary to that of the southern places-for example, to that of Torontc and Philadelphiait is only the disadvantageous reciprocal situation of the stations that may account for his putting down as definitive the following declaration (p. 88), that " a careful comparison with other published observations has led to the conclusion that a state of magnetical disturbance prevailed at one or more other stations upon so many of the occasions upon which it was observed at Lake Athabasca and Fort Simpson, as to leave it doubtful whether, without more positive evidence, any of the disturbances, considered generally, can be considered to have been merely local." ${ }^{1}$ If Toronto and Philadelphia had been situated on a degree of longitude

[^4]nearer to that of Captain Lefroy's stations, or if Sitka had been more to south, and had not been itself magnetically almost identical to Lake Athabasca, it seems likely to me that his so very careful treatise would have led to a more decisive conclusion concerning the laws for the variations of the disturbances in the aretic and temperate regions. That the same hesitation as to the extensions of the disturbances is to be found with Sir Edward Sabine in his treating the observations at Point Barrow and Port Kennedy, and with those who have treated the observations of Kane and others, may derive from the same reason-viz., the stations in the arctic and temperate regions being situated upon very different degrees of longitude, the currents, or the components of currents, which are passing from the north to the south, or vice versâ, and which are producing the disturbances of declination, have not been quite the same at the different stations. The researches that I have made on the observations contained in the work you so kindly sent me, both on the declination and the other components of the magnetic action, have given me the most valuable confirmations of the laws I have pronounced in the treatises which I had the pleasure to send you-viz., that as for the declination and the vertical intensity, there is correspondence between the disturbances of opposite directions at the north and south of the region of the greatest number of auroras ; and that, as for the horizontal intensity, the same correspondence takes place between the perturbations of same signs.
' I also fully agree with the declaration of Captain Lefroy (p. 82), "that so regular in their operations in these regions are the so-called irregular influences, that the denominations might with propriety be reversed." It seems necessary to assume that, as has been proved by several authors, there be two, as one may say, regular sources of the magnetic variations: one proceeding more directly from the heat of the sun and culminating towards the tropics, the other proceeding-not, as has been supposed, from the magnetic pole-but from the region of auroras, or from a zone almost coinciding with that region.
' It was most interesting to find that the three abovesaid stations are all lying at the north of that zone. Consequently, this zone is situated much more south in North America than in Europe, where it passes just at the north of Norway, and also for this reason is very likely to be really identical with the region of auroras. Sitka also seems to be situated at the north of this zone, or at least to be lying in it. I regret ignoring where the Sitka observations are to be found, or even whether there be any complete series of them published. ${ }^{1}$
' It would lead me too far to make a detailed comparison between our observations and those of Captain Lefroy and Sir J. Richardson. The analogy is most remarkable, also, in the regular variation of all the components; yet, as for the afternoon minimum of the declimation, the

[^5]northern position of Spitzbergen, and the consequently diminished intensity of the heat of the sun, make their influence sensible.
' Believe me, \&c.
'Aug. Wykander.'
11. The direction of the Earth currents at Lake Athabasca was investigated by Dr. Lloyd in 1862 ('Proceedings' Royal Irish Academy), with the result that an easterly current prevails there from midnight to 6 A.m. having an azimuth of 110°, and a westerly current during the remainder of the 24^{h} having an azimuth of 291°. The easterly currents were"greater in magnitude in proportion as they were less in duration"; at Toronto the current is wholly easterly, the mean azimuth found by Lloyd being $81^{\circ} 25^{\prime}$, while at Sitka the westerly currents are greater than the easterly, the geographical position of the station in reference to the distribution of land and sea being proved to have an unexpected influence on this source of magnetic movement.
12. The preparation of this volume has required me, after an interval of many years, to retrace the steps of Sir Edward Sabine, the pioneer of the modern science of terrestrial magnetism in this country. I must allow myself to express the admiration that has been revived for the general accuracy of detail, and the astonishing industry that marks his 'Contributions to Terrestrial Magnetism.' In his comprehensive view of the subject, however, features of merely local interest were apt to disappear; this is especially the case with local disturbance, or irregularity due to geological causes ; he only noted four stations of mine as thus affected, namely, the Isle d'Urval (No. II), Otter Island, on Lake Superior (No. LVIII), a Station on Rainy River (No. XCI), and Pierre au Calumet, on Mackenzie's River (No. CCXXVI) ; several others were disposed of by being simply omitted. This, however, is doing less than justice to a very interesting feature presented in all extensive magnetic surveys, and one which, when the subject of earth currents comes to be better understood, will probably prove to possess considerable importance. I hare, therefore, rejected no observation because of its anomaly, where there is no internal appearance of error, and by bringing together all the elements, and all the evidence, derived
in the case of the force, from data independent of one another, have in many cases shown the existence of local anomaly, probably due to geological causes, and established a fact which, if it has no other value, will at least influence the selection of stations by future observers.

The lines of equal inclination and equal intensity are laid down on the maps accompanying this volume in near accordance with the actual observations, each station of observed dip giving two points. It is not to be supposed that a local influence necessarily covers all the distance to the next isoclinals; but without multiplying stations its limits are unknown. For example, a considerable inflection of the line of 81° will be observed near Lake à la Crosse resulting from the anomalous dip at the Portage Somnante (CCX) ; the values at the Fort on the same lake, and at Fort Pitt further south, showing that it does not extend to the lines of 80° and 79°. It would appear that the greater inflections of the isoclinals bear some relation to the courses of the rivers; but whether this is due to any influences of the rivers themselves upon electric currents, or is an incidental result of the watercourses, in so many cases in Northern America, marking the line of junction of two dissimilar geological formations, I am not competent to decide. The direction of the isoclinals of 83° and 84° towards Hudson's Bay ; of 82° and 83° in the valley of Mackenzie's Piver ; of 77° and 78° towards the Gulf of St. Lawrence, are good examples of the effect in question. There are also several examples of less extensive inflections, as, for instance, to the south of Lake Athabasca, on either side of Lake Wimnipeg, and on the Lake of the Woods. Dr. Lamont's admirable magnetic chart of Bararia ${ }^{1}$ shows deflections apparently comected with the beds of the Rline, the Maine, and the Danube. The like has been proved of the Coal Fields of Belgium by the Rev. S. J. Perry. ${ }^{2}$

I have pointed out on pp. 35 and 151 that the position of the line of relative total force $1 \cdot 80$, or $13 \cdot 62$ in absolute measure, as laid down on the map, engraved in 1846 for the late Sir E. Sabine's

[^6]contribution No. VII, does not accord with my observations on the Saskatchewan. I had not observed when those paragraphs were printed that the map entitled 'An Arctic Magnetic Survey, Epoch 1840-1845,' which accompanies his contribution No. XIII of 1872 , is in this particular a reproduction of the earlier one. The isodynamic lines laid down are those of 13.0 and 14.0 ; but, on interpolating a line for $13 \cdot 62$, it will be found to fall where the line of 1.80 was formerly drawn. Now the maps herewith profess to give the facts of observation on the American continent, and not what - may be, possibly, the best mean results of a general survey of the Northern hemisphere ; and it is perhaps incumbent on me to show that my results are locally correct, which is the special business of the observer, by other and independent evidence. Fortunately Captain P. W. Haig, R.A., laid down the lines of 13.0 and 13.5 in British Columbia from his own observations in 1858-1860. ${ }^{1}$ They are shown on the annexed diagram, lying far to the west of General Sabine's position, and the effect of applying a correction for the secular change of the force in 16 years is to move them yet further in the same direction. The 'Report of the United States Coast Survey' for 1881 having appeared at the last moment for the correction of this work, I take from the appendix by Mr. Charles A. Schott, ${ }^{2}$ the data it furmishes for estimating the secular changes since 1840 over the region I treat of. The general evidence is conclusive that in middle latitudes on the American continent the intensity of the earth's magnetic force is now decreasing, and has been decreasing for about 35 years. It was therefore greater in British Columbia in $181 \pm$ than Captain Haig found it in 1860, and I have felt justified in moving his lines of 13.0 and 13.5 to the west, by about the space equivalent to $0 \cdot 10$ of total force. The agreement of his results with mine when thus reduced to the same epocl is complete.

[^7]List of Stations in N. America affording Data for determining Secular Ciange. The earlier Observations, when not given by Mr. Schott; wlll be found in Sir E. Sabine's Collections.
I.-On the Atlantic Coast.

Place. Lat.	Loug. ${ }^{1}$	Date	Var.	Dip	Force	Ohserver
St. Pierre, \quad • Miquelon		$1872 \cdot 5$	$\stackrel{\circ}{20} 25$		$12 \cdot 05$	Goodfellow
	. $5310 \cdot 6$	1881.8	2820.8	$75 \quad 20$	$12 \cdot 60$	Very
$\left.\begin{array}{c}\text { Quebec, } \\ \text { Canada }\end{array}\right\}$. $4648 \cdot 4$	$1842 \cdot 8$	$1412 \cdot 0$	$\begin{array}{lll}77 & 15 & 3\end{array}$	$13 \cdot 84$	Lefroy
	. 7114.5	1845.5	-	$\begin{array}{lll}77 & 8 \cdot 8\end{array}$	$13 \cdot 63$	Younghusband
		1850.5	1617	77	$18 \cdot 60$	Schott
		$1879 \cdot 7$	$17 \quad 13 \cdot 7$	$7645 \cdot 1$	$1: 3: 54$	Baylor
$\left.\begin{array}{c} \text { Montreal, } \\ \text { Canada } \end{array}\right\}$. 4530.5	1842.7	\& 58	$77 \times 13 \cdot 1$	13.72	Lefroy ${ }^{\text {a }}$
	. 7334.9	$1843 \cdot 3$	-	$\begin{array}{ll}77 & 8 \cdot 8 \\ 77\end{array}$	1376	"
		$1845 \cdot 5$	-	3785	$13 \cdot 5 \cdot 3$	Younghusband ${ }^{\text {b }}$
		18595	1221	$7651 \cdot 4$	$13 \cdot 68$	Schott
		18797	1340.5	$76 \quad 257$	$13 \cdot 60$	Baylo.
$\begin{aligned} & \text { Halifax, } \\ & \text { Nova Scotia } \end{aligned}$. 4639%	1838.5	-	$\begin{array}{lll}74 & 45\end{array}$	$18 \cdot 07$	Estcourt
	. 6335	1847.5	-	$75 \quad 37$	$13 \cdot 07$	Keily
		$1879 \cdot 7$	20433	$\begin{array}{lll}74 & 39 \cdot \\ 7\end{array}$	$18 \cdot 04$	Very
		1881	--	7429	$12 \cdot 93$	
$\left.\begin{array}{c}\text { Bangor, } \\ \text { Maine }\end{array}\right\}$. 4448		15 10.0	$76 \quad 11 \cdot 6$	- 5	Graliam
	. 6847	$1857 \cdot 7$	$1519 \cdot 9$	7614.7	$13 \cdot 59$	Dean
		1863	-	765	$13 \cdot 34$	Schott
		$1879 \cdot 6$	-	$75 \quad 29 \cdot 8$	$13 \cdot 24$	Baylor
Portland,Maine	. $4338 \cdot 8$	$1851 \cdot 6$	$1141 \cdot 1$	7.5 $14 \cdot 1$	$13 \cdot 54$	ITilgard
	. $7016 \cdot 6$	18595	12 O	$74 \quad 567$	$13: 31$	Schott
		1864.8	12437	$\begin{array}{ll}75 & 9.5\end{array}$	$13 \cdot 49$	lichardson
		1865.5	$12+2 \cdot 3$	$\begin{array}{ll}75 & 8 \cdot 3\end{array}$	$18 \cdot 49$	"
		$1866 \cdot{ }^{\circ}$	12429	$75 \quad 7 \cdot 4$	$13 \cdot 47$	"
$\left.\begin{array}{l}\text { Cambridge, } \\ \text { Mass. }\end{array}\right\}$.	. $4222 \cdot 8$	$1842 \cdot 8$	-	74195	$1: 3 \cdot 46$	Lefroy
	. $71 \quad 76$	$1870 \cdot 6$	11463	$7: 384$	$18 \cdot 99$	Baylor
$\left.\begin{array}{c} \text { Dorchester, } \\ \text { Matss. } \end{array}\right\} \text {. }$	- 4220	18428	-	7 ± 19	1833	Lefroy
	$.71 \quad 2 \cdot 6$	18467	08314	7412%	$13 \cdot 15$	Lee
		$1855 \cdot 6$	$10 \quad 13 \%$	74 29.j	$1: 3 \cdot 0$	Schott
Proridence, ।. Rhode $I_{s} l$ \}.	. $4140 \cdot 5$	$1842 \cdot 8$	-	7400	$18 \cdot 4$	Lefroy
	. 71239	18.55	931%	7 ± 159	$13 \cdot 24$	Scliott
Newharen,Conn.	- 41180	18428	,	78.274	$18 \cdot 45$	Lefroy
	. $7255 \cdot 4$	18446	$545 \cdot 1$	7324.3	13.51	Renwick
		18.57	617.3	- -	18.8	
		$1845 \cdot 6$	637.9	$73.81 \cdot 9$	13:32	Ruth
		$18.5 \cdot 6$	$7 \quad 2 \%$	7344.5	1\%-18	Schott

[^8]I.-On the Atlantic Coast (continued).

Place Lat. Long.	Date	Var.	Dip	Force	Observer
	1844.6	$\stackrel{\circ}{5} 501$	$\stackrel{\circ}{72} 8{ }^{\prime} 7.9$	$13 \cdot 66$	Renwick
	$1855 \cdot 6$	6-11.2	7- $52 \cdot 0$	$13 \cdot 30$	Schott
	18739	$\begin{array}{lll}7 & 9 \cdot 0\end{array}$	72296	$13 \cdot 43$	Milgard
	1879.5	$732 \cdot 0$	$72 \quad 83$	$13 \cdot 30$	Baylor
	1842.8	-	$7159 \cdot 0$	13.58	Lefroy
	$1846 \cdot 4$	$351 \cdot 1$	$72 \quad 1.0$	13.42	Locke
	1855%	$431 \cdot 7$	$7217 \cdot 7$	$13 \cdot 90$?	Schott
	1862.6	$5 \quad 0 \cdot 0$	725	$13 \cdot 42$	"
	$1872 \cdot 8$	$5 \quad 27 \cdot 8$	$72 \quad 15 \cdot 4$	$13 \cdot 65$	
	$1877 \cdot 8$	$6 \quad 2 \cdot 2$	$7141 \cdot 3$	$13 \cdot 40$	Baylor
Washington $\} \quad .3853 \cdot 1$ I. Capitol) . . 770.6 II. Corner, Second, $3853 \cdot 1$ and C Streets 770.2 III. Corner, First, 3853.2 and 13 Streets: $770 \cdot 4$ IV. Old Coast, $3853 \cdot 1$ SurveyOffice: 770.6	$1812 \cdot 8$	-	$7113 \cdot 8$	$13 \cdot 41$	Lefroy
	1852	-	$7116 \cdot 1$	$13 \cdot 29$	Flilgard
	1867.5	$248 \cdot 1$	$71 \quad 6 \cdot 7$	$13 \cdot 347$	Schott
	$1872 \cdot 5$	$3 \quad 0 \cdot 0$	$71 \quad 0 \cdot 6$	13399	"
	1875.5	$3 \quad 39 \cdot 4$	$7049 \cdot 1$	$13 \cdot 293$	'"
	188.5	$355 \cdot 4$	$70 \quad 44 \cdot 1$	$13 \cdot 227$	Eimbeck
	18452	-	71 33•8	$13 \cdot 40$	Lee
	$1856 \cdot 6$	$221 \cdot 4$	$71 \quad 21.7$	$13 \cdot 48$	Schott
	1858.5	-	$7122 \cdot 6$	-	"
	$1850 \cdot 5$	-	7124.4	-	"
	$1860 \cdot 7$	$226 \cdot 7$	71159	$13 \cdot 446$	
	1861	-	$7118 \cdot 3$	-	Walker
	$1862 \cdot 6$	$239 \cdot 4$	$7118 \cdot 5$	$13 \cdot 368$	Schott
	1863.5	$241 \cdot 8$	$71 \quad 14 \cdot 3$	$13 \cdot 351$	"
	1865	-	$7111 \cdot 7$	-	,

II.-Inland Stations.

II.-Inland Stations (continued).

Place Lat. Long.	Date	Var.	Dip	Force	Observer
$\left.\begin{array}{c} \text { Columbus, } \\ \text { Ohio } \end{array}\right\} \quad . \quad 3957.7$		-	- ,		
	1838	-	$71 \quad 49$	18.53	Locke
	1841	-	$71 \quad 3 \cdot 7$	-	Loomis
	1845		7140	-	Locke
	1871.8	$-120 \cdot 6$	7198	13.53	Mosman .
$\begin{array}{ll}\text { Sault S. Marie, } \\ \text { Mich. } & \left.\begin{array}{l}46 \\ 84\end{array}\right) 20 \cdot 9 \\ 84 & 20 \cdot 1\end{array}$	18449	$-11 \cdot 1$	-	13382	Lofroy
	1845.5	-	77 19\%	-	liae
	$1880 \cdot 6$	+ 058.7	- -	14	Tery
	$1880 \cdot 6$	$+145$	$77 \quad 24 \cdot 0$	$14 \cdot 01$	Baylor
$\left.\begin{array}{c} \text { Mackinac, } \\ \text { Mich. } \end{array}\right\} \quad: \begin{aligned} & 4551 \\ & 8440 \end{aligned}$	1842	-	$7637 \cdot 0$	$14 \cdot 10$	Locke
	1880%	020%	$7627 \cdot 6$	$13 \cdot 04$	Baylor
$\left.\begin{array}{llll}\text { Cincinnati, } \\ \text { Ohio }\end{array}\right\} \quad . \quad 398 \cdot 6$	1841	-	7026.5	1:39	Locke
	18494		7028	18.55	Lefroy
	$1880 \cdot 9$	-2144	$70: 4.7$	$13 \cdot 39$	Baylor
$\left.\begin{array}{r} \text { Vincennes, } \\ \text { Indiana } \end{array}\right\} \quad . \quad 8841 \cdot 7$	1840	-	6951	$13: 56$	Locke
	1841	-	(9) 52.8	-	Loomis
	1880.8	-422.5	6958.4	13:44	Baylor
New Harmony, 38 8 Indiana 87 50	1840	-	$69 \quad 3 \cdot 6$	$13 \cdot 46$	Loclie
	1848.9	$-647 \cdot 0$	$69 \quad 7 \cdot 2$	13:59	Fauntleroy
	$1861 \cdot 3$	- 643.5	-	-	-
	$1880 \cdot 9$	$-55 \cdot 1$	6920	$13 \cdot 31$	Baylor
$\left.\begin{array}{l}\text { Madison, } \\ \text { Wisconsin }\end{array}\right\}$ •43 $4 \cdot 5$ 89 $24 \cdot 2$	1839	-	-	14.09	
	1876.8	-659%	73548	14.04	ILilgard
	$1877 \cdot 7$	- 6449	7355.5	$14 \cdot 13$	Braid
	1878.7	- 03138	$73 \quad 56.5$	14.07	Suess
	1878.9	- 02.29	$7850 \cdot 1$	14.06	Baylor
	1879.7	- $6 \underline{2} 9$	73510	$1+03$	Ilason
	$1880 \cdot 7$	-6209	78.40%	$14 \cdot 00$	"
$\left.\begin{array}{c}\text { Dubuque, } \\ \text { Iowa }\end{array}\right) \quad . \quad 4229.5$	1839	-	738	18.76	Locke
	$1880 \cdot 8$	-645.8	$73 \quad 78$	$18 \cdot 60$	Bay or
Darenport,$\begin{aligned} & \text { Iowa }\end{aligned}$$\begin{aligned} & \text { a }\end{aligned} \quad .4129 .9$O	1889			13.76	Locke
	$1877 \cdot 8$	$-72 \cdot 8$	7156.6	$13 \cdot 79$	Braid

III.-On the Pacific Coast.

Place. Lat. Long.	Date	Var.	Dip	Yorce	Onserver
Sitka,) . $59 \quad 2 \cdot 9$	$1827 \cdot 5$	-28 50	$7{ }^{\circ} 5$	12.98	Laitle
Alaska) . $13520 \cdot 3$	1830	-28 16	75.51	12.90	Irman
	18385	-28 37	$75 \quad 51$	$12 \cdot 77$	Belcher
	1842.5	-2083	$75 \quad 51$	-	Observatory
	1851	-2914	7620	-	Collinson
	1880.4	-29 4.8	75111%	12.95	Wall
	$1881 \cdot 7$	- 291112	75) 160	$1 \cdot 91$	Nichols
Esquimault, ${ }^{\text {a }}$ (48254	1859	-2158	7184	$13 \cdot 10$	Itaicr
B. Colum.' . 123263	1881.7	-22556	$7130 \cdot 3$	$12 \cdot 87$	Nichols

We have here twenty-one stations widely distributed, which show a marked decrease of intensity, and only one, St. Pierre Miquelon, where the change is the other way. At seven stations the evidence is inconclusive, from the long intervals without observation. In all probability the force increased in the earlier part of these intervals, and has been decreasing since. It is not my object, however, to discuss the secular changes, but to establish my conclusion that the lines of equal total intensity in British Columbia in 1844 were, as I have drawn them, to the westward of their position in 1860.

The return of Captain H. P. Dawson from Fort Rae, Great Slave Lake, where he has passed twelve months in observations connected with the International Circumpolar expeditions, enables me also to add, with his permission, and that of the Council of the Royal Society, that he found the dip at Fort Chipewyan (CCXXIX) on September 17, 1883, $81^{\circ} 20^{\prime} \cdot 6$.

If we may assume that this element attained its maximum value at Lake Athabasea at the same epoch as it did at Toronto (1859), it was probably again the same in 1874 as it was in 1844, and we have therefore for the present rate of secular change of dip in that quarter- $1^{\prime} \cdot 7$ per annum.

Attention should have been more pointedly drawn in the text (pp. 96-99) to the remarkable development of magnetic force on the Eastern side of Lake Winnipeg, between lats. 51° and $52 \frac{1^{\circ}}{}{ }^{\circ}$, longs. $96^{\circ}-97^{\circ} \mathrm{W}$. It is so great as to make it doubtful whether the physical pole of maximum intensity should not be located lere, 4° to the west of its theoretical position ; but the remark on p. 48, that there is a secondary focus in or about lat. 56°, long. 106°, must be qualified. The increase in that neighbourhood appears to be but a local disturbance.

1 had the serious misfortme to lose in 1846 a part of my baggage in which were contained three MS. volumes of Journal. Thus a great quantity of descriptive notes and details which would have been of service for the present publication were irretrievably lost, and the trouble I have had in recorering many particulars from other sources has been, to myself at least, an ample proof of the necessity for it.

December, 188:3.
J. II. LEFROY.

CONTENTS.

-0,050500

pagf
PREFACE i-xxii
SECULAR CHANGES xix
MAGNETIC INSTRUMENTS 1
GEOGR.IPHICAL DATA, HOW ASSIGNTED 2
MAGNETIC OBSERVATIONS-VARIATION 7
,, DIP 14
", RELATIVE FORCE (LLOYD'S NEEDLES) 17
, $, \quad, \quad$ (FOX's NEEDLES) 29
, , HORIZONTAL FORCE $3 \cdot$
, ABSOLUTE FORCE 87
COMIINING OBSERVATIONS BY WEIGHT 38
INDUCTION INCLINOMETER, LLOYD'S 43
BRIEF STATEMFNT OF RESULTS 46
SECULAR CHANGES. xix-4!
OBSERYITIONS IN CANADI AND THE CNITED SRATES 51
BASE STATION, TORONTO $56-166,1 \approx 6$
DLARY:
MONTRESL TO LAKE SUPERIOR 69
SAULT ST. MARIE TO LAKE WINNIPEG 71
FORT ALEXANDER TO FORK FACTORY (${ }^{\prime \prime}$
NORWAY HOUSE TO LAKE ATHABASCA 118
PEACE RIYER AND LESSER SLAVE LAKE 141
UPPER SISKATCHEWAN 150
MACKENZIE'S RIVER AND GREAT SLAVE LAKE 158
POSTSCRIPT AND GENERAL RECAPITULITTION 165
Appendix:
I. THEORY OF THE INDUCTION INCLINOMETER 171
II. IDENTIFICATION OF STATLONS TN CANADA 173
III, COMPARISON OF THE MEAN DISTURBINCES AT AMERICIN sTITIONA 176
IV. DAT. FOR RESULTS NOT PREVIOUNLY PUBLISUED 184

MAPS.

obsertations of haig and moore at the end
MAP OF THE NORTH-WESTERN PEGION

MAP OF THE SOUTH-EASTERN REGION
Skeleton maps Wire numerical ratoes

Errata and Corrigenda.

Page 9, line 6, for date read data.
", 11. The Table should be numbered II.
" 15 ., , , III.
", 19, line 17, delete 'two.'
48, ,, 23, delete B. 56, 106.
49, S'ecular changes, see the Preface.
$"$ 59, The Dip at Stanstead is $76^{\circ} 19^{\prime .} \cdot$.
" 52, The Dip at Stanstead is $76^{\circ} 19^{\prime} \cdot 2$ not $77^{\circ} 19^{\prime} 2$.
" 72, " 7. Delete This is the greatest force (see CXXI. p. 97). Lieut. Very, U.S.N., found the variation at Michipicoton $1^{\circ} 20^{\prime} \cdot 5 \mathrm{~W} ., \mathrm{X} 2 \cdot 860$ in July 1880.
79, , 10. The weight (0.75) belongs to this line.
,, 80 , ,, 16. Insert W. (0.85).
,, 81, ,, 20, for $5 \cdot 48$ read 54.8 .
", 83. The Portage des Morts is the same as the Pine Portage of some maps.
,, 84, for 91.23 read 91.28 foot of page.
", 84. Franklin, whose nomenclature was followed by the author, has Upper Sturgeon Lake, between Lac de Mille Isles and Lake à la Crosse, and Sturgeon Latio beyond Lake a la Crosse.
His Sturgeon Lake is miscalled Lake à la Crosse on Prof. II. Y. Hind's map, and is now called Nameucan Lake.
Franklin's Lake à la Crosse is called Pine Lake on Prof. Hind's map, and is now called Nequaqua Lake on maps published by authority.
85 , lines $14-15$ from bottom, for W . (1) (2) read W . (2.5)-(6.0).
", 88 , line 16 , for $94 \cdot 3$ read $94 \cdot 37$.
", 89. I learn from Professor Dawson that a remarkable geological fault occurs at Rat Portage, and accounts for much disturbance.
92 , lines $5-4-3$ from bottom, for W. ($1 \cdot 5$) read W. ($1 \cdot 0$).
", 93 , line 12 , after $14 \cdot 128$ urite W. ($0 \cdot 6$).
", 95 , ", 15, for $14 \cdot 056$ read $14 \cdot 050$; line 31 , for $51^{\circ} 36^{\prime}$ read $51^{\circ} 3^{\prime} \cdot 6$.
", 99, ", 6, after $14 \cdot 396$ insert 11: ($0 \cdot 3$).
" 100, ", 14, for $14 \cdot 113$ read $14 \cdot 125$.
", 101, ", 7, after $14 \cdot 162$ insert W. (0.9).
,, 107, ,, 16, after $14 \cdot 191$ insert W. (1-2).
", 116 ", 7 , for $58^{\circ} 3^{\prime} \cdot 50$ read $58^{\circ} 43^{\prime} \cdot 8$; line 8 , for $86^{\circ} 47^{\prime} \cdot 3$ read $86^{\circ} 18^{\prime} 3$; line 9 , insert July 18, delete 2.
121 , last line, for 1.8624 or $14 \cdot 096$, read $1 \cdot 8716$ or $14 \cdot 165$.
127, ,, for 14.054 read 14•116.
12 s , line 5 , for $11 \cdot 061$ read $14 \cdot 109$.
" 149, " 23, for Pembine read Pembina.
," 166. Station 21, p. 53, has been accidentally omitted; Station 5, Stansteat, Dip for $77^{\circ} 19^{\circ} \cdot 2$ read $76^{\circ} 19^{\prime} \cdot 2$.

A MAGNETIC SURVEY.

PARTI.

INSTRUMENTS AND MODES OF UBSERVATION.

1. The instrumental equipment provided for the magnetic survey now to be described was composed as follows:-
(1) A Dip Circle by George, of Falmouth, of the construction of the late Mr. Robert Weare Fox. It weighed in box complete, with stand, 37 lbs .
(2) A nine-inch Dip Circle by Gambey, with stand, 27 lbs .
(3) A six-inch Transit Theodolite by Jones, with stand, $10 \frac{1}{2} \mathrm{lbs}$.
(4) A Declination Magnetometer, with stand, 25 lbs .
(5) A Transportable Declinometer of Weber's construction, subsequently replaced by the much superior instrument made by Jones under the directions of Lieut., now Major-General, C. J. B. Riddell, R.A.
(6) A Transportable Bifilar, to which the same remark applies. The two weighed, with necessary stands, 22 lbs.
(7) A Lloyd's Induction Inclinometer, made by Jones, for one bar, with stand, 18 lbs.
(8) An Azimuth Compass of the Admiralty Committee's construction, by Barrow, with stand, $5 \frac{1}{2} \mathrm{lbs}$. I received this instrument through Sir George Simpson in Montreal on the eve of my departure.
(9) A Repeating-Reflecting .Circle by Dollond, with Mercurial Horizon, 25 lbs.
(10) A small Portable Transit Instrument, the telescopic power of which proved too small for observing small stars in strong moonlight, but it was very useful for rating the chronometer when stationary in the winter.
(11) Two Portable Barometers, each $4 \frac{1}{4}$ lbs. $-8 \frac{1}{2} \mathrm{lbs}$.
(12) Two Pocket Chronometers, $\frac{1}{2} \mathrm{ll}$.

To the foregoing, which amount in weight to about 180 lbs ., must be added a Pocket Compass, some Thermometers, 'Nautical Almanacks' for 1843 and 1844, Raper's ' Navigation,' blank books and forms, stationery, and numerous minor requisites.

My personal equipment comprised a small tent, with bedding, a cassette or clothes chest (100 lbs .), a canteen (64 lbs.), a provision basket (40 lbs .), a gun and rifle, my assistant's valise, about a fortnight's provisions for the crew, and their slender effects, all of which, with the canoe itself, which weighed 4 cwt., had to be carried over the Portages, a work in which Corporal Henry and myself invariably took a share when not employed on observation.
2. The instruments suffered severely in their journey by stage from Toronto to Montreal in April ; there was then no railway, and navigation was not open. The two dip circles were almost shaken to pieces. Lloyd's static needles lost force from the effect of the jolting to such a degree as to entirely disconnect the subsequent observations from those intended to be the base series, taken at Toronto. The same remark applies to Fox's needle C, and a new base had to be taken for both, at Fort William (Station LXIX). The instruments were reinstated, as well as could be done, before starting.
3. A few words are necessary with respect to the observations made. I begin with those for assigning geographical position.

In observations made at sea, which are usually taken at points on the earth's surface a hundred miles, more or less, apart (being seldom made more than once in twenty-four hours), and when the ship itself may change its position several miles during the progress of a long observation ; where, moreover, the future identification of the locality is impossible, it matters little whether the geographical co-ordinates assigned are rigorously accurate or not. The observer marks them as he marks the ship's track on his chart. It is otherwise on land, where the recovery of the identical spot on which former observations were made is not excluded by any impossibility, and is always of some consequence. Nevertheless there are often no definite or recognisable landmarks, and, in unsurveyed countries, often no name for the locality. Hence it becomes of importance that the geographical co-ordinates assigned for the place of each
observation, particularly when the places are not far apart, should be sufficiently accurate to be sensibly correct when plotted on a map. Casting a retrospect over my own preparation and previous instruction, it now appears to me that both the importance and the difficulty of this degree of precision were somewhat overlooked, and I cannot hope to have always attained it. Sometimes for days together there were no sights to be had. I trusted much Franklin's track-routes; but his positions are not always consistent, and the best maps of later date, most of the country being still unsurveyed in any strict sense, often differ from him. In the present revision I have arailed myself of all sources of information to correct my longitudes, and to place the localities of observation as correctly among themselves as present geographical knowledge permits. The territory of the Hudson's Bay Company has witnessed surprising changes since 1843. New routes have been opened and old ones abandoned; for example, the circuitous canoe route above Fort William by Dog Lake and the Long Portages to the Lake of the Thousand Islands, is quite deserted, and probably no longer practicable. The old race of coyageurs from Lower Canada is dying out, if not already extinct, and with them will in time disappear the traditionary and often historical names of places, especially of the Portages, to be replaced in a generation or two by vulgar AngloAmerican names. Travelling with French-speaking guides and voyageurs, I naturally called places by the names they gave them, and by these they were formerly published. I now add current English designations as far as known. I learnt at Montreal in 1877 that one of my Indian guides was still living, and what is more remarkable, that Jean-Baptiste Belanger, a partaker of the sufferings of Franklin, Richardson, and Back in 1821, was also living. But time will rapidly efface the traces of the fur trade over most of the country, as it has already done in the Rocky Mountain States.

4. Latitude.

The instrument employed was an eight-inch repeating-reflecting circle, by Dollond (now at Kew). It was my practice, with the sun, invariably to observe altitudes first on, then off the limb, so as to eliminate index error. Stars were generally observed on the limb

[^9]only, and the index error was frequently ascertained ; it was never more than $37^{\prime \prime}$ or less than $17^{\prime \prime}$. The horizon glass was reversed between each pair of sights; the glasses of the roof being of indifferent quality, reversal made a difference of about $56^{\prime \prime}$. I rarely used the instrument as a repeating circle except for lunar distances.

The latitude was observed every day at noon when the sun was visible, and when it was possible to put ashore for the purpose, and was worked back or carried forward by courses and estimated distances to the station of A.m. or P.m. observation. Towards the end of the season, when the stars appeared early, it was usually ascertained also by altitudes of Polaris at night. The method of rednction by circum-meridional altitudes has been always employed, as it not unfrequently happened that the meridian was passed before the first sight. The barometric correction is always small, and after the breakage of my barometer on June 18 was necessarily omitted. In the present revision I have applied mean corrections based on the height of the region above the sea.

In Table IX., 'Phil. Trans.' 1846, latitudes were given to the nearest decimal of a minute; but as astronomical observations of a high order have recently been extended by the Surveyors of the Dominion of Canada as far as the Saskatchewan, I now give them for comparison to the last second, withont, however, supposing that it is possible for a traveller to make sure of his results by sextant observations to that degree of precision, still less to the decimal parts of a second, with which books are often incumbered. Franklin's latitude of Cumberland House (Station CLXXXIII) in 1825 is $53^{\prime \prime}$ greater than in 1819, and of Fort Chipewyan (CCXXIX) 5 " less, being the only stations common to both jomrneys. I did not observe it at Cmberland House, and differ from him $28^{\prime \prime}$ at Fort Chipewyan.

5. Longitude.

I started with two pocket chronometers, lent by Captain, afterwards Sir Francis, Beaufort, R.N., Iydrographer-Armold No. 138, and Barraud No. $\frac{2}{5} \frac{3}{0}$. The stationary rates furnished with them were $-3^{\mathrm{s} .} 7$ and $-2^{\mathrm{s} .0} 0$ respectively; but these altered much in travelling, and, to judge by their numbers, they were very old watches. I also carried a new half-chronometer of my own, No. 5,242 , which proved a most worthless timekeeper, notwithstanding the name of
repute it bore. ${ }^{1}$ No. $\frac{2}{503}$ was carried by my assistant, Corporal Henry, and met with some accident on July 12, which caused it to stop; on examination in London one of the jewels proved to be fractured. In September 1844 I received at Norway House another chronometer, No. 2,142, in its place. These watches were wound up and compared daily at the halt for brealifast. It would have been better, looking to the irregularity of their travelling rates, to have compared them twice in the twenty-four hours. Their error, on Greenwich mean time, was carefully determined at each station of well-ascertained longitude, and thence their mean rates for short intervals deduced, for placing the intermediate stations. I have long looked for the extension of the electric telegraph to the North-West for better data, but, although it had reached Edmonton in 1876 (113° W.), no such use has yet been made of it. Mr. W. H. King has, however, ascertained astronomically the longitude of three important points on my route, ${ }^{2}$ which I have used for the correction of others.

My practice was to observe the sun's altitude every morning, weather permitting, at the breakfast halt, and often also in the afternoon, reducing the results with a latitude found at noon and reduced to the station. With the exception of twenty-one stations, between July 1 and August 25, 1844 (about one thousand twohundred miles in distance), I travelled over very little ground not laid down on the route maps of Franklin's celebrated expeditions of 1819 and 1825. These maps, however, were engraved for the narrative of the first expedition, and not corrected by the second. Bayfield's surveys, recently republished with longitudes corrected, were of the greatest service on the great lakes. Route maps by Messrs. Dawson and Napier from Lake Superior to Red River (Ordnance Survey Department, 1870), of the Lower Saskatchewan by Professor H. Y. Hind (1859), of Lake Wimipeg, Nelson River, and York Rivers by Dr. Robert Bell, of the Geological Survey (1878), have all been of great assistance to me in recovering details after so long an interval of time.

I suljoin for the convenience of future travellers a list of the meridians which may be regarded as well determined down to this time, not including the standard meridians of the Territorial Survey now in progress.

[^10]Table I.

atio	Longitude, w.		$\begin{gathered} \text { Authority } \\ \text { F. }=\text { Franklin } \end{gathered}$
	Are	Time	
Citadel, Quebec	${ }_{7}^{7} 1120$		
Montreal (Viger Sq.)	7332.55	454117	Captain Ashe, R.N.
Sault St. Mary .	842133	$53726 \cdot 2$	Michigan State Survey.
Fort William	891330	55654°	From revised chart.
Fort Francis .	932436	${ }_{6}^{613} 38.4$	A mean value.
Rat Portage	953319	$62213 \cdot 3$	Boundary Commission 1826.
Fort Alexander	96229	6 $2529 \cdot 3$	A mean value.
Fort Garry, Winnipeg	971536		Boundary Comm., 1872.
Norway House	$\begin{array}{llll}98 & 3 & 54\end{array}$	$\begin{array}{lllllllllllllll}6 & 32 & 15 \cdot 6\end{array}$	A mean value.
York Factory	92 96	6944.	F., first voyage.
Grand Rapid, W. .		$63751 \cdot 6$	F., first voyage. F., second roya
Cumberland House	1021913	64916.9	F., first and second voyages.
Carlton House	106321	$\begin{array}{llll}7 & 612\end{array}$	Dominion Survey.
Edmonton House .	1133019	$\begin{array}{llll}7 & 24 & 1 \cdot 3\end{array}$	
Lesser Slave Lake.	$\begin{array}{llll}116 & 0 & 0\end{array}$	7440	Six sets of lunar distances, L.
Isle à la Crosse	$\left.\begin{array}{lll} 107 & 52 & 55 \\ 107 & 54 & 36 \end{array}\right\}$	63135.3	F.,first and second voyages.
Methy Portage, S.E.	1095254	71931.6	F., second royage.
", ", centre	1095754	$\begin{array}{lllll}7 & 19 & 51 \\ 7 & 6\end{array}$	"
" N.W.	109598	719565	"
Fort Chipewyan	$\left.\begin{array}{c} 111 \\ 111 \\ 19 \\ 19 \\ 19 \end{array}\right\}$	725147	F., first and second voyages.
Fort Resolution	113450	7350	F., second voyage.
Fort Simpson	1213300	88612.	F.'s map corrected.
-	1212515	8541.	T. Simpson, 1837.

6. A traveller who relies on chronometers should not carry a less number than three. Given, however, the daily difference between two chronometers whose mean rate is known, we can obtain some clue to their irregularities, for if their going be uniform, the difference between them must increase or diminish daily by the sum of their mean rates. Applying this principle to the daily comparison of Nos. 138 and $\frac{5}{50} \frac{2}{3}$ between May 29 and June 30, it was obvious that the rate of one or both was very much larger than the mean for the first ten days, and less than the mean for the next twenty. The former period included all the long Portages which occur about the height of land. It also appeared that the application of the mean rate to No. 138 gave longitudes in fair accordance with Franklin's, the greatest deviation being 18' and the average deviation 7^{\prime} for stations which can be compared; whereas the application of the same rule to No. $\frac{5^{3}-\frac{3}{0}}{}$ gives results as much as 30^{\prime} too far to the west, whence it may be fairly assumed
that No. $\frac{80}{50}$ was the one most affected under the circumstances. Having obtained this clue, I distributed the irregular excess in the arbitrary proportion of one-third to No. 138 and tuo-thirds to No. $\frac{2}{503}$, with the result that the two Greenwich times thus obtained do not on the average of twenty-two stations differ more than $17^{\mathrm{s}} \cdot 6$, and the extreme difference is under $40^{\text {s }}$ or $10^{\prime} \cdot 0$ of are.

7. Magnetic variation.

The variations are comprised between $28^{\circ} \mathrm{W}$. and $45^{\circ} \mathrm{E}$. (the former was observed towards the mouth of the River St. Lawrence). They were principally determined by observations of the sun's azimuth with a seven-inch compass, of what was then known as the Admiralty Committee's construction, but partly by the employment of a collimator magnet. The chief novelty in the compass was the employment of the directive force of several parallel magnets under the card, instead of one only. They had the desired effect of making the magnetism more powerful ; but, on the other hand, they made the card much heavier and its freedom of motion more easily checked by the least dirt or a slight imperfection either of the pirot or of the jewel on which the card worked. The compass was furnished with several pivots. It should have had also a spare jewel made to screw into the card, but this was not thought of. The collimator magnet was tubular, with a scale at one end, seen by reflected light through a lens at the other end, suspended in an oak box by a silk fibre about nine inches long. The axis of a theodolite was brought into coincidence with the axis of the magnet, which coincided with Division $81 \cdot 5$, or as nearly so as its movements permitted; after reading off the limb, it was directed upon the sun, whose hour angle being known, its azimuth was computed in the usual way. The torsion of the silk suspension was approximately got rid of by first suspending a brass bar ; and the magnetic axis was ascertained by occasional reversals of the magnet in its hook supports. This method is in principle far more precise than observation by compass, where there is greater liability to index error, ${ }^{1}$ and less freedom of motion; but the oscillations of the magnet in the open air, particularly if there is a little wind, make it less easy to get a true coincidence of the axis of a detached theodolite with that of the magnet than might appear, and I must

[^11]acknowledge that the results of variation are less harmonious than I could wish. The element itself fluctuates much more than any other, and although we know with some certainty what its ordinary limits are in high latitudes in the winter months, ${ }^{\text {, we do not yet }}$ know what they are in the summer months. It is also much more affected than any other by the character of the superficial strata, and the position of different formations relatively to the magnetic meridian at any given spot. Thus in one place on Lake Superior, Captain Bayfield marked on his chart of 1828 variation $3^{\circ} 50^{\prime}$ West, and the two adjacent values within a few miles on either side are 6° East, 7° East. This influence is the greater, the less the directive force, or the greater the dip. I am not acquainted with any very extensive series of observations of variation on land taken from day to day at short intervals of distance ; Sir John Franklin, however, has six observations within the same limits (not counting those at which the only datum is the sun's bearing at noon), and these present anomalies of the same nature. For example, June 5, 1825, at Fort Alexander (Station LXXXII); variation $15^{\circ} 15^{\prime} 6$ E., on the same day at a station not five miles distant, variation $13^{\circ} 17^{\prime} \mathrm{E}$. The magnetic survey of the British Islands 1856-7 furnishes several examples of declination deviating a degree or more from the normal values, ${ }^{2}$ as does the Australian survey of Dr. George Neumeyer in 1858-64. The greatest distance between the stations of this observer being only thirty miles, and many of them being only eighteen or twenty miles apart, they assimilate very much to the conditions of my own. I quote as an extreme instance his station at Moonmot (No. 73) in Victoria, 1860, lat. $37^{\circ} 38^{\prime} 5$, long. $143^{\circ} 23^{\prime}$ E. He found variations respectively $5^{\circ} 54^{\prime} \mathrm{E} ., 15^{\circ} 53^{\prime} \mathrm{E}$., and $7^{\circ} 2^{\prime} \mathrm{E}$. within a very small circle, the force ranging at the same time from $4 \cdot 67$ to $5 \cdot 11$. Dr. Neumeyer attributes these irregularities to the great local attraction caused by the volcanic rocks forming this point of irruption, ${ }^{3}$ and the same conditions occur at many points in the present survey, notably about Lake Superior.
${ }^{1}$ See Mrngnetical and Meteorological Observations at Lake Athabasca and Fort Simpson, by Capt. J. H. Lefroy, R.A., and at Fort Confidence, in Great Bear Lake, by Sir John Richardson, C.B., M.D., 1855.
${ }^{2}$ Phil. Trans., 1870.
${ }^{3}$ Results of the . Wagnetic Survey of the Colony of Victoria, executed during the Sears 1858-1864, by George Neumeyer, lh.D., 4to, Mannheim, 1869, p. 145. See too his Stations, 117-121, 182 and 218.

The greater part of my observations of rariation were made in the forenoon, with the sun from three to five hours distant from the meridian : a great many, however, were made in the afternoon, and it is obviously necessary for very accurate determination that a correction for the diurnal movement between these periods of the day should be applied; but I am not aware of any date upon which the amount of such correction can be even approximately assigned. As I have already remarked, we do not know at present the mean diurnal movements of the horizontal needle in the summer months for any station in the northern regions of the American continent, except Sitka, in Alaska, on the Pacific coast, ${ }^{1}$ where they are subject to the same irregular influences as were found to prevail at Lake Athabasca, and where the most easterly moyements occur as early as 4 to 6 a.m. Still less do we know of the irregular fluctuations, beyond the fact that they are of frequent occurrence and of large amount.

We will, however, examine the facts as far as known.
First, with regard to the mean diurnal movements. I take the hours of 8 a.m. and 3.30 p.m. for comparison, being good representative hours of observation for travellers. The first is at Toronto and in middle latitudes generally, about the time of the most easterly deviation of the north end of the needle. That is to say, easterly variations are then at their maximum, and westerly variations at their minimum. The second is beyond the turning-point of most westerly deviation (which occurs about 1 p.m.), and the needle is about half-way back to its mean position, which it repasses about 7 p.m.

The amexed Plate shows the mean diurnal movements of a horizontal needle at each of three American stations during the summer months, or for the ordinary season of travelling, namely, from May to September inclusive, and I have added the range of the mean disturbance of the declination for each hour, indicated by the shaded margin to the mean curves. ${ }^{2}$

The stations were:-
${ }^{1}$ See Annuaire Magnétique et Météorologique, etc. Par A. T. Kupffer. St. Petersburg, 1845.
${ }^{2}$ Extracted from a paper by the writer, On the Irregular Flucturtions of the Magnetical Elements, printed in the 1roceedings of the American Association for the Advancement of Science for 1851. The numerical values will be found in the Appendix.

Philadelphia.—Lat. $39^{\circ} 58^{\prime} \cdot 3$, long. $5^{\text {h }} 0^{\mathrm{m}} 42^{\mathrm{s}} \cdot 9$; distant from the magnetic pole, ${ }^{1} 1,917$ miles. The times of observation being regulated by Göttingen mean time, $39^{\mathrm{m}} 46^{\mathrm{s}}$ E. of Greenwich, fell $19^{\mathrm{m}} 30^{\text {s }}$ after the civil hours named.

Toronto.-Lat. $43^{\circ} 39^{\prime} \cdot 4$, long. $5^{\text {h }} 17^{\mathrm{m}} 33^{\mathrm{s}}$; distant from the magnetic pole, 1,659 miles. Times of observation $2^{\mathrm{m}} 21^{\mathrm{s}}$ after the hours named.
$135^{\circ} 17^{\prime} 12^{\prime \prime}$
Sitka.-Lat. $57^{\circ} 2^{\prime} \cdot 9$, long. $9^{\mathrm{h}} 1^{\mathrm{m}} 8^{\mathrm{s} \cdot 8}$; distant from the magnetic pole, 1,355 miles ; from Fort Chipewyan, 780 miles, and from Fort Simpson, 460 miles. Times of observation, $19^{\mathrm{m}} 5^{\mathrm{s}}$ after. the hours named.

Taking then 8 A.m. and 3.30 p.m. as hours fairly representing the usual times of observation, the deviation of the compass needle from its mean position in the several months of the year is as follows. Each quantity for Philadelphia, Toronto, and Sitka is the mean for the years 1843 and 1844, which were years of minimum sun spots, and in which the movements were of less than an average amount.

Table.
Comparison of Diurnal Movements for the several Months of the years 1843-1844.

Month.				8 A.m. Deviation, Easterly				3.30 P.M. Deviation, Westerly			
				Ph.	To.	Ska.	Aa.	Ph .	To.	Ska.	A. 1.
January	-	, -	-	$2 \cdot 0$	$2 \cdot 1$	0.4	$4 \cdot 0$	$1 \stackrel{\square}{2}$	$2 \cdot 2$	0.7	$4 \cdot 4$
February	19	$2 \cdot 6$	-0.1	$5 \cdot 6$	$1 \cdot 2$	1.9	$0 \cdot 8$	$5 \cdot 1$
March	27	$4 \cdot 3$	$0 \cdot 9$	-	2.5	$3 \cdot 5$	$3 \cdot 0$	-
April	.	. .	-	$3 \cdot 4$	$4 \cdot 0$	$1 \cdot 1$	$11 \cdot 8$	$3 \cdot 1$	$3 \cdot 9$	36	$11 \cdot 9$
May	-	.	-	$4 \cdot 0$	$5 \cdot 1$	$3 \cdot 2$	$9 \cdot 4$	$3 \cdot 0$	$4 \cdot 1$	$3 \cdot 5$	$9 \cdot 4$
June	.	.	.	$4 \cdot 4$	$5 \cdot 4$	$3 \cdot 6$	-	$3 \cdot 4$	$3 \cdot 7$	$3 \cdot 7$	-
July .	-	.	-	$4 \cdot 6$	$6 \cdot 0$	$2 \cdot 3$	-	$3 \cdot 8$	$4 \cdot 3$	$3 \cdot 6$	-
August	.	-		$4 \cdot 9$	$6 \cdot 1$	$0 \cdot 4$	-	$2 \cdot 6$	$3 \cdot 3$	$2 \cdot 5$	-
September	.	.		32	$4 \cdot 0$	$-1 \cdot 1$	-	1.5	$2 \cdot 7$	1.7	-
October	.	.		$2 \cdot 5$	$2 \cdot 6$	$-0 \cdot 1$	$3 \cdot 8$	0.7	1.7	0.9	$6 \cdot 0$
Norember	.	.		$1 \cdot 6$	$2 \cdot 1$	-1.2	$3 \cdot 8$	$1 \cdot 1$	$1 \cdot 6$	$0 \cdot 7$	$3 \cdot 3$
December	.	. .		$1 \cdot 4$	$1 \cdot 4$	-1.0	19	1	$1 \cdot 8$	$0 \cdot 2$	$3 \cdot 8$

Thus it appears that in comparatively low latitudes, such as that of Toronto, an A.m. and p.m. observation in the summer months will differ about 10^{\prime}, and in high latitudes, such as that of Fort Chipewyan, on Lake Athabasca, or Fort Simpson, by a considerably larger quantity.

The easterly extremes at Sitka, on the Pacific, fall nearly two hours earlier than they do in the interior of the continent, and although not less in amount, but rather greater, they do not influence the usual hours of observation so much.

The late afternoon is preferable to the early morning for a traveller's observations of variation, not only because the element itself differs less from the mean, but also because the disturbing influences are less active.

I observed the movements of the declinometer en route upon many occasions for longer or shorter periods, and also, as my instructions required, observed the Göttingen term days whenever it was practicable, and these have all been plotted down. Taking the stations in the order of remoteness from Toronto, the following notes give the results as to correspondence of movement:-

Sault St. Marie.-November 4 and 5, 1844. From Toronto 282 miles. A well-marked movement of declination and horizontal force, the former measures $9^{\prime} \cdot 3$ at Toronto and $44^{\prime} \cdot 4$ at the Sault, but the epochs correspond: min. about $6^{\mathrm{h}} 38^{\mathrm{m}}$, max. 13^{h} Gött.

White River, Lake Superior.-October 21 to 26, 1844, during detentions, including the term day of October 23-24. Distance from Toronto 402 miles.

A well-marked easterly movement occurred between $21^{\mathrm{d}} 3^{\mathrm{h}}$ and $21^{\text {d }} 21^{\text {h }}$, Gött. The first westerly extreme was, at Toronto, at $21^{d} 4^{\text {h }}$, but not until $21^{d^{d}} 7^{\text {h }}$ on Lake Superior. The easterly extremes coincide at $21^{\mathrm{d}} 15^{\mathrm{h}}$. The second westerly extreme was at 20^{h} at Toronto and $20^{\mathrm{h}} 30^{\mathrm{m}}$ on Lake Superior. Range at Toronto, $13^{\prime} \cdot 4$; at White River, $31^{\prime} \cdot 9$.

Also an easterly extreme at $14^{\mathrm{h}} 30^{\mathrm{m}}$ to 15^{h}, Gött., and a westerly extreme at 20^{h} at both places. Range at Toronto, $13^{\prime} \cdot 3$; at White River, $30^{\prime} \cdot 8$.

A well-marked easterly movement prevailed at both places between 12^{h} and 13^{h} of Gött. mean time on the 23 rd . A wellmarked westerly movement between 18^{h} and 19^{h} : range between the limits, at Toronto, $13^{\prime} \cdot 9$; on Lake Superior, $27^{\prime} \cdot 2$. The epochs are nearly coincident.

Fort William, Lake Superior.-October 11 and 12, 1844. Distant from Toronto, 503 miles. Half-hourly readings were taken from $11^{\mathrm{d}} 4^{\mathrm{h}}$ to $12^{\mathrm{d}} 6^{\mathrm{h}}$, Gött.

An easterly extreme occurred from $12^{\text {d }} 2^{\text {h }}$ to $12^{d} 4^{\text {h }}$, Gött.. and
a westerly extreme about $12^{\mathrm{d}} 6^{\mathrm{h}}$ marked at both stations. Range at Toronto, $10^{\prime} \cdot 9$; at Fort William, 40^{\prime}.

Winnipeg River.-Distant from Toronto 751 miles. Term day of June 21-22, 1843. A certain degree of correspondence is observable in the movements between $21^{\mathrm{d}} 14^{\mathrm{h}}$ and $21^{\mathrm{d}} 17^{\mathrm{h}}$, which are not very marked at either station ; but there is no trace at Toronto of a bold westerly movement of 30^{\prime} between $22^{\mathrm{d}} 4^{\mathrm{h}} 30^{\mathrm{m}}$ and $22^{\mathrm{d}} 5^{\mathrm{h}}$, or of several other well-marked morements of less magnitude at the northern station. The magnitude of shock, as is well known, is no guide to its geographical range.

Jacli Rirer.-The Long Portage. Distant from Toronto, 904 miles. Term day of July 19-20, 1843. A continuous westerly movement, broken by minor oscillations, lasted from $20^{\mathrm{d}} 1^{\text {h }}$ to $20^{\mathrm{d}} 8^{\mathrm{h}} 10^{\mathrm{m}}$, Gött.; about the same time a westerly movement set in at Toronto, but reached its limit somewhat earlier, at $7^{\mathrm{h}} 20^{\mathrm{m}}$; the magnet steadily moved east. Range at Toronto, $11^{\prime} \cdot 8$; at the Portage, $1^{\circ} 53^{\prime}$. The difference of turning point is well marked.

York Factory, on Hudson's Bay.-Distant from Toronto, 940 miles, July 26, 1843. A state of disturbance prevailed nearly all day. The observed range of declination was $2^{\circ} 13^{\prime}$; no disturbance was observed at Toronto, and the recorded readings only show a range of $16 \cdot 3$.

Fort Chipewyan, Lake Athabasca.-Distant from Toronto, 1,478 miles; from the magnetic pole, 780 miles. Term day of October 18-19, 1843. A bold easterly movement commenced at $18^{\mathrm{d}} 15^{\mathrm{h}}$, turned at $15^{\mathrm{h}} 40^{\mathrm{m}}$, and reached its westerly limit about $16^{\mathrm{h}} 40^{\mathrm{m}}$. This movement is conspicuous both at Greenwich and at Toronto, and a secondary westerly oscillation at 16^{h} is as well marked at Toronto as at the Fort; it is even perceptible at Greenwich. Here, then, we have a shock traceable over a third of the northern hemisphere. The range was at Lake Athabasca $1^{\circ} 2^{\prime} \cdot 4$, at Toronto $17^{\prime} \cdot 5$, at Greenwich $10^{\prime} \cdot 3$. There was another movement from $19^{\mathrm{d}} 5^{\text {h }}$ to $19^{\mathrm{d}} 6^{\mathrm{h}}$, Gött., in which correspondence may be traced ; while, on the other hand, Greenwich had a movement of 5^{\prime}, from $19^{\mathrm{d}} 8^{\mathrm{h}}$ to $19^{\mathrm{d}} 9^{\mathrm{h}}$, which is sufficiently well marked, and is absent in the American traces.

I may add that on this occasion the same degree of correspondence occurs in the changes of horizontal force, but with a remarkable difference of epoch. The shock, accompanied by rapid
increase of force, is shown at Toronto at $15^{\mathrm{h}} 5^{\mathrm{m}}$, at Greenwich at $15^{\mathrm{h}} 30^{\text {m }}$, at Lake Athabasca at $16^{\mathrm{h}} 35^{\mathrm{m}}$, and the maxima are : at Toronto at $15^{\mathrm{h}} 35^{\mathrm{m}}$, at Greenwich at $16^{\mathrm{h}} 30^{\mathrm{m}}$, at Athabasca at $17^{\mathrm{h}} 10^{\mathrm{m}}$. On the other hand, a large movement, between $19^{\mathrm{d}} 5^{\mathrm{h}}$ and $19^{\mathrm{d}} 8^{\mathrm{h}}$, which is also common to all three stations, is nearly coincident as to the turning points.

At the same station.-Term day of November 24-25, 1843. A well-marked movement at $24^{\text {d }} 13^{\text {h }}$, Gött., shown at Greenwich and at Toronto, is wanting at Athabasca; a second movement at Toronto at $14^{\mathrm{h}} 15^{\mathrm{m}}$ is wanting at both the other stations. A bold, easterly movement at Athabasca from $18^{\text {h }}$ to 19^{h} occurs in the contrary sense at Toronto, but is wholly wanting at Greenwich; another from $22^{\mathrm{h}} 20^{\mathrm{m}}$ to $23^{\mathrm{h}} 40^{\mathrm{m}}$ is wholly wanting at both Toronto and Greenwich.

The sume station.-Term day of December 20-21, 1843. A small but well-marked movement at Greenwich at $12^{\mathrm{h}} 25^{\mathrm{m}}$ is wholly wanting at Toronto and Athabasca. Well-marked movements at Athabasea between $16^{\mathrm{h}} 20^{\mathrm{m}}$ and 18^{h} can be barely identified at Toronto, and produce only a small undulation at Greenwich, which, however, I am disposed to identify with the same shock.

The same station.-Term day of January 24-25, 1844. A high degree of disturbance prevailed. The principal movement of declination occurred between $16^{\mathrm{h}} 30^{\mathrm{m}}$ and 18^{h}, and is to be identified at Toronto and at Brussels; it is remarkably prominent at Sitka, but a little later. On the other hand, enormous movements between $24^{\mathrm{d}} 21^{\mathrm{h}}$ and $25^{\mathrm{d}} 4^{\mathrm{h}}$, common to Athabasca and Sitka, are entirely absent from the European traces, and have but a moderate degree of answering movement at Toronto-enough, however, to show that the disturbance embraced that station.

The same station.-Term day of February 23-24, 1844. A moderate disturbance lasting from $24^{\mathrm{d}} 4^{\mathrm{h}}$ to $24^{\mathrm{d}} 8^{\mathrm{h}}$ at Athabasca is perceptible at Toronto, but with no correspondency in the movements.

Fort Simpson, on Mackenzic River.-Distant from Toronto, 1,827 miles; from the magnetic pole, 781 miles. Disturbance in April 1844 , from $16^{\mathrm{d}} 19^{\text {h }}$ to $17^{\mathrm{d}} 12^{\text {h }}$, Gött. This disturbance apparently set in about the same time at both stations, and the most violent movements occurred between $16^{\mathrm{d}} 20^{\mathrm{h}}$ and $17^{\mathrm{d}} 3^{\mathrm{h}}$ at both, but there is no resemblance of detail; and a shock which threw the magnet
no less than $6^{\circ} 40^{\prime}$ to the eastrward at Fort Simpson, at $17^{\mathrm{d}} 1^{\mathrm{h}} 24^{\mathrm{m}}$, is not apparent at Toronto at all. This magnetic disturbance was one of the most remarkable on record. It embraced both hemispheres. The force began to return to its normal value about 2^{h} or $2^{\mathrm{h}} 30^{\mathrm{m}}$ earlier at Toronto in Gött. time than it did at Fort Simpson. The difference of longitude being about $2^{h} 8^{m}$, this appears to connect the movement with that of the sun.

At the same station.-Term day of April 24-25, 1844. A very bold easterly shock at Fort Simpson, from $25^{\mathrm{d}} 1^{\mathrm{h}} 30^{\mathrm{m}}$ to $25^{\mathrm{d}} 4^{\mathrm{h}} 20^{\mathrm{m}}$, Gött., coincides exactly in epoch with a westerly movement at Toronto, but the range was in one case about $2^{\circ} 54^{\prime}$, in the other only $10^{\prime} \cdot 1$. The trace at Sitka closely resembles that at Fort Simpson. There is a similar agreement of epoch in great changes of the horizontal force, but without close agreement of actual time. Toronto is again about 1^{h} the earlier in two maxima, but later in two others.

At the same station.-Term day of May $24-25,1844$. A conspicuous movement to the eastward at $24^{\mathrm{d}} 12^{\mathrm{h}} 15^{\mathrm{m}}$ at Toronto precedes by about 10^{m} only, one which appears to correspond with it at Fort Simpson. On the other hand, large movements at Fort Simpson, especially one about $25^{\text {d }} 2^{\text {h }}$, Gött., have no answering shock at Toronto.

This comparison might be extended much further ; but the examples adduced are sufficient to prove that the regular observations at a fixed observatory like that of Toronto can be of no service to a traveller for the correction of his absolute variations, beyond a very moderate range of distance. Even when shocks coincide in time, they bear no definite relation in magnitude.

8. Magnetic dip.

The dips observed are comprised between 69° and 83°. The instrument was a nine-inch circle, by Gambey, of Paris, the property of the late Admiral Fitzroy, R.N., the same which had been employed a few years previously in the magnetical survey of the British Islands; besides which I carried a seven-inch Fox's dip circle, which was commonly used only for determining the relative force, and its results of inclination were not made use of. Since, however, it is of great importance to corroborate certain irregular values by those of a second instrument and a second observer, so as to have good grounds for attributing them to local disturbing force, I have now added in some cases the approximate dips by

Fox. The poles of Gambey's needles being reversed each time (with only four early exceptions), the results are obviously more to be relied on than those obtained with needles which cannot be reversed. It will be seen, however, in the next section that the Fox instrument gave generally results which are within moderate limits of error.

The observation was usually limited to one complete determination with needle No. 1, consisting of four or five readings of both ends of the needle in each of the usual four positions, before reversing the poles, and as many afterwards. The degree of reliance to be placed upon the dip thus ascertained will be seen on comparing the results by needle No. 2 when observed at the same time and place, as subjoined.

Table [I.
Comparison of the Dips given independently by two needles, at certain stations.

No.	$\underset{\substack{\text { Date } \\ 1843-4}}{ }$	Station	Dip		$\begin{gathered} \text { Half } \\ \text { Hiffer- } \\ \text { cence } \end{gathered}$
			G. 1	G 2	
34	Apr. 20	Williamsburg	$7{ }_{7} 781 \cdot \underline{1}$	$7{ }^{\circ} \mathrm{O} \times 2$	$1 \cdot 1$
lixix.	May 29	Fort William	$\begin{array}{lll}78 & 97\end{array}$	78104	$0 \cdot 3$
cxili.	July 3	Fort Garry :	$7819 \cdot 4$	78163	1.5
cxixi.	July 10	Lake Winnipeg	$\begin{array}{lll}80 & 3 \cdot 7\end{array}$	$80 \quad 7 \cdot 2$	1.8
cexixit.	July 12	Norway House,	8111.0		
-	July 13			$81 \quad 6 \cdot 2$	$2 \cdot 4$
clxil.	July 24	York Factory .	$8350 \cdot 5$	8344.0	$3 \cdot 2$
clexixitio.	Aug. 24	Cumberland House	8028.8	$8031 \cdot 8$	1.5
ccixi.	Sept. 9	Isle à la Crosse	$80 \quad 9 \cdot 1$	$8010 \cdot 5$	0.7
coxis.	Sept. 30	Fort Chipewyan.	8137.7	8137.5	$0 \cdot 1$
ccxev.	May 10	Fort Simpson .	8141.5	$8150 \cdot 7$	$4 \cdot 6$
ccxciil.	May 29	Fort Gcod Hope.	8255.8	$8256 \cdot 1$	$0 \cdot 1$
ccevir.	June 22	Fort Resolution .	$82+435$	82454	1.0
cexlit.	July 11	Fort Vermillion	8048.4	$8047 \cdot 6$	$0 \cdot 4$
cclex.	July 22	Dunvegan .	78457	7846.8	0.5
colviv.	Aug. 3	Lesser Slave Lake	$78 \quad 362$	$7841 \cdot 9$	2.8
cclexivir.	Aug. 11	Fort Assiniboine	78169	78135	1.7
cclexx.	Aug. 17	Edmonton .	77534	$77 \quad 55 \cdot 1$	$0 \cdot 8$
cclexxivi.	Aug. 22	Fort Pitt	7843.0	$7839 \cdot 1$	$2 \cdot 0$
colixim.	Aug. 26	Carlton House	$78 \quad 30 \cdot 2$	$78 \quad 31 \cdot 2$	0.5
clexixiti.	Aug. 29	Cumberland House	80205	8019.0	0.7
cxixyr.	Sept. 7	Norway House	$8111 \cdot 1$	$81 \cdot 11 \cdot 4$	$0 \cdot 1$
cix.	Sept. 19	Fort Alexander	$\begin{array}{lll}79 & 3 \cdot 4\end{array}$	$\begin{array}{cc}79 & 2 \cdot 5\end{array}$	$0 \cdot 4$
x	Sept. 30	Fort Francis	$7741 \cdot 4$	75445	$1 \cdot 6$
Lxix.	Oct. 11	Fort William (1)	$78 \quad 75$	-	1
IXI		Pic \#\% (2)	7755	$\begin{array}{ll}77 & 505\end{array}$	$0 \cdot 0$
${ }_{\text {LXI }}$.		Pic Fort .	7832.8	$7830 \cdot 1$	1.3
Lx.	Oct. 21	White River	7×337	7832%	$0 \cdot 6$
LiII.	Oct. 30	Michipicoton	$\begin{array}{ll}78 & 8 \cdot 1\end{array}$	78 8\%	$0 \cdot 2$
midx.	Nov. 4	Sault St. Marie	7746	77456	$0 \cdot 3$
XL.	Nov. 8	Fort La Cloche	$76 \quad 50 \%$	76497	05
xxxiv.	Nov. 14	Penetanguishene	76192	7621.0	$0 \cdot 9$

The half difference between the two values of the dip, being the difference of each from the mean of both, is by the foregoing table:

Under 1^{\prime}. 17 times.

$O_{\text {ver }} 1^{\prime}$,	2^{\prime}	.				8	
,, 2^{\prime}	"	$3 '$.	.	.	-	3	"
, 3^{\prime}	"	4^{\prime}	.	.			1	"
, 4^{\prime}		.					1	

The last difference is probably attributable to disturiance.
The result is to show that much reliance may be placed upon a single determination of dip, which enters into so many deductions of the force from angles of deflection with Lloyd's static needles, and from the times of horizontal vibration of magnets.

I observed a series of dips at the Royal Military Repository, Woolwich, with needle No. 2 before leaving England in 1842 and again after my return in 1846. The results are as follows:-
1842. Needle Gambey, No. 2.

The probable error of a single observation of this set is $2^{\prime} .87$ and the probable error of the mean is $0^{\prime} 59$.

After return to England :-
1846. Needle Gambey, No. 1.

The probable error of a single observation of this set is $4^{\prime} \cdot 37$, and the probable error of the mean is $0^{\prime} 74$, being rather greater than before.

I was favoured by Sir G. Airy with the dips observed at Greenwich during the month of June 1846, the Observatory being only two and a half miles east of the R. M. Repository. The mean is $68^{\circ} 58^{\prime \prime} \cdot 1$, showing that the foregoing results, although less uniform than could be wished, and although the instrument doubtless by this time wanted readjustment, are correct; with the greater dip of high magnetic latitudes, the error of individual results diminishes.

9. Relative Magnetic Force.

Unlike the variation and the dip, which are matters of direct observation, the relative amount of the magnetic force at any given spot, as compared with its value at some other place, can only be inferred from the observations, after careful estimation of changes of condition capable of affecting the result. First of these is a rariation in the magnetic state of the needle employed. Needles commonly lose their magnetism, not always regularly or uniformly, and their maguetism depends upon their temperature. The early observations of Humboldt, those of Franklin, and of Sabine down to 1823 , were made by counting the vibrations of a dipping needle brought to rest by the earth's magnetic force, a method attended in practice with so many difficulties that it has long been completely abandoned. In the method I was instructed to employ, the variable force of the earth's magnetic attraction was weighed, so to speak, against the force, assumed to be invariable, of its attraction of gravitation, in one of two ways.

Lloyd's method.-The needle was an ordinary dipping needle adapted to Gambey's circle, but perforated with three small holes in the southern limb, intended for the insertion of a minute counterpoise of copper (three of these were supplied, weighing respectively $0.5,0 \cdot 6$, and 1.0 grain), by which it is brought to a position nearly at right angles to the line of dip, that being the position in which the resulting value of the force will be least affected by the friction of the axle on its supports. I find in the Irish survey that the readings ranged from -5° to -17°, giving angles of deflection ranging from 77° to $86^{\circ} .^{1}$ In some preliminary observations at the Repository, Woolwich, July 6, 1842, dip $69^{\circ} 1^{\prime} \cdot 9$, therm. 59°, a

[^12]weight of $0 \cdot 60$ grain in needle A gave an angle of deflection from the line of dip.

In the first liole of	$63^{\circ} \quad 0^{\prime}$		
",	second	83°	27^{\prime}
", third	,"	$101^{\circ} 35^{\prime}$	

As each needle has its personal history, I will complete that of needle A before referring to the other.
10. Necelle A, or 1. Coefficient for temperature, $q=0.000016 .^{1}$

At Quebec, on September 1, 1842, where the dip was $77^{\circ} 15^{\prime} \cdot 3$, thermmeter 70°, and the relative total force as 1.829 to $1 \cdot 372$, or as 1.344 to unity at Woolwich, the weight of 0.60 grain, as used above, proved to be insufficient. Tried in the third hole it only gave a deflection of $54^{\circ} 55^{\prime}$; two half-grain weights were then tried, namely, one in the first and one in the second hole, which gave too large an angle ($127^{\circ} 47^{\prime}$), and lastly, $1 \cdot 0$ grain in the first hole, which gave too small an angle ($44^{\circ} 25^{\prime 2}$). None of these weights being suitable for the American intensities, I subsequently obtained weights of 0.7 and 0.8 grain from the mint at Philadelphia. In point of fact, the absolute amount of the weight used is of no consequence, and I ought to have got a piece of copper wire and filed it until it brought the needle to the required reading of -12° or -13°.

This method of determining relative intensity, which was first employed by the late Professor Humphrey Lloyd in his magnetic survey of Ireland in 1835, was then new and unfamiliar to me, and I did not, white in England, aprreciate sufficiently perhaps the importance of profiting by his ever-ready instruction.

Needle A was used with a weight of 0.8 grain in the middle hole at twenty-four stations, ending May 29 at Fort William, which had to be taken as a base for that series, in consequence of the loss of force since leaving Toronto (ante, p. 2). The total angle of deflection having diminished from 92° at Montreal to 87° at Fort William, lringing the south and of the needle close to the lifting frame, I thought it expedient, looking to a further increase of

[^13]force, to shift the weight to the last hole, by which the angle was augmented to 95°. This formed the basis of a second series. It was used with 0.8 grain in the last hole, at fifteen stations, ending at the Rat Portage, Lake of the Woods, where the instrument was thrown down, and one of the arms of the axis of the needle slightly bent; but this was partially set right at Fort Garry, and a third series of observations made at twelve stations, extending to York Factory. On trying it, however, on August 15 at the Grand Rapid of the Saskatcherran, I found it impossible to get any satisfactory results, although nothing had appeared amiss on the previous day, and the needle A was henceforth laid aside. It was used in all at forty-nine stations, referred to Fort William and Norray House as bases.
11. Lloyd's Needle B, or 2. Coefficient of temperature, $q=\cdot 000050$.

A weight of 0.6 grain in the first hole gave at the Repository, Woolwich, on July 5, 1842, therm. 63°, dip $69^{\circ} 1^{\prime} 9$, a deflection of $92^{\circ} 21^{\prime}$; with two the same weight at Quebec, on September 1 , therm. 70°, the angle of deflection was, owing to the increase of force, only $42^{\circ} 32^{\prime} \cdot 1$. On shifting the counterpoise to the third hole, therm. 73°, it became $103^{\circ} 22^{\prime} \cdot 7$. It was used with this weight at six stations in Canada, which are included as to dip in Table XLIX-L, but were omitted by Sabine from his abstract of intensities, Table XXVII, probably from the loss of magnetism of the needle, and I omit them for the same reason.

The counterpoise (0.6 grain) was shifted at Montreal on April 25, 1843, to the centre hole, and was so used until my arrival at Fort William, the angle of deflection having decreased from $88^{\circ} 6^{\prime}$ to 81° 36^{\prime}, and the S end of the needle being now behind the frame for lifting it off its agates, the counterpoise was here shifted, on May 29, to the third hole, and the angle of deflection became $112^{\circ} 13^{\prime} \cdot 5$, being increased no less than $30^{\circ} 37^{\prime} 8$. This was too much, and I should have done better to have filed the counterpoise down a little ; but I was not free from a notion that the weights must remain untouched. The weight remained the same until my arrival at York Factory on July 24, when the large increase of the angle of deflection, now more than $134^{\circ}\left(90^{\circ}+44^{\circ}\right)$ made me substitute a new counterpoise, the value of which was not ascertained, ly which it was reduced to $64^{\circ} 48^{\prime}\left(90^{\circ}-25^{\circ} 12^{\prime}\right)$. This was used in returning
over the same ground to Norway House, which is the base of two series, the one extending from Fort William to Norway House, and thence to York Factory, the other extending from York Factory to Norway House on my return. After completing the observations at Norway House on this second occasion, the mean angle of deflection being found to be only $67^{\circ} 48^{\prime}$ at this station, I reverted to the arrangement in use from Fort William to York Factory ; that is to say, the counterpoise used from Montreal to York Factory was restored to its place (viz. 0.6 grain in the third hole), giving an angle of $106^{\circ} 54^{\prime}$ at therm. 63°, which became the base of a fourth series with this needle, extending to Lake Athabasca.

Sabine showed much patience and skill in getting arailable results out of these broken series, but I candidly admit and regret their imperfection, which was partly caused by the unsuitability of the method for determining so great a range of intensity, with the high dip that prevailed. The ralues range from $1 \cdot 800$ to $1 \cdot 878$, or as unity $1 \cdot 043$. In Dr. Lloyd's observations in Ireland the range of force is from 0.9953 to 1.0166 , or as unity to 1.023 , and of the angle of deflection from $76^{\circ} 56^{\prime}$ to $84^{\circ} 55^{\prime} .^{1}$

Two new Lloyd's needles were forwarded to me in 1844 and received at Norway House. They proved to be about $0 \cdot 2$ inch too long for the dip circle, and were never used. A third pair distinguished by Sabine as L.C and L.D were received in 1845 and employed by Lieutenant Younghusband at five stations, and by myself at seven stations. The temperature corrections were duly ascertained and applied.

On any repetition of these observations it will, I think, be found possible, by taking La Cloche or Sault St. Marie as the base station, with weights adjusted to give readings of -13° or thereabouts, to cover the whole ground with one series, provided the needles retain their magnetism unaltered.

The following example illustrates the use of these needles:

Extract from the magnetic surrey of Ireland :-		
At Carlingford, Dip	$71^{\circ} 28^{\prime \prime} 2$	At Gorey, Dip $70^{\circ} 53^{\prime} \cdot 8$
Angle	$-5^{\circ} 27^{\prime} 5$	$-14^{\circ} 1^{\prime} 1$
Total deflection	$76^{\circ} 55^{\prime} 7$	$\overline{84^{\circ} 54^{\prime} 9}$
Inteusity to Dublin as unity	1.0166	0.9033

See Fifth Report of the British Association, and Iloyd's Miscellaneous Papers connected with Physical Science, 1877, p. 203.

12. Example of reduction with Lloyd's needles.

Let $\delta=$ the dip at the station
$\theta=$ angle of inclination of the needle to the horizon when loaded.

Then the force $\phi=\frac{\beta \cos \theta}{\sin (\delta-\theta)}$, where β is a constant.
Example.-Needle A.-Fort William (Station LXIX) being adopted as the base, observed there on May 29, 1843. $\delta=78^{\circ} 10^{\prime} \cdot 0$ mean angle of deflection of Lloyd's static needle A, with a weight of $0 \cdot 6$ grain in the middle hole, $-9^{\circ} 39^{\prime} \cdot 4$, Th. 63°. Then $(\delta-\theta)=87^{\circ} 49^{\prime} \cdot 4$.
$\theta_{1}=\quad-9^{\circ} 39^{\prime} 4=$
$\delta=$
$\left(\delta-\theta_{1}\right)=\frac{78^{\circ} 10^{\prime}}{87^{\circ} 4 y^{\prime} \cdot 4} . \quad . \quad \log \cos 9 \cdot 993802$
At St. Helens, Montreal, April 29, observed $\delta=77^{\circ} 5^{\prime} \cdot 3$, mean angle of deflection with the same weight $-15^{\circ} 6^{\prime} \cdot 1$, Th. 56°. Then $(\delta-\theta)=92^{\circ} 11^{\prime} \cdot 4$.

Relative Force $\frac{\text { St. Helens }}{\text { Fort William }} \quad$. $\overline{9.990939}=0.9703$
But the force at Fort William is $1 \cdot 8601$
(see Station LXIN) $\frac{0.269536}{0260475}=1 \cdot 8217$ as observed,
This is to be corrected for a difference
of temp. of $+7^{\circ} 1-\left(t-t_{1}\right) q=$
0.909888 9.990951

Finally force at St. Helens . . . $\overline{0 \because 60426}=1.8265^{1}$ as reduced.
To convert this into Absolute Scale
Multiply by the ratio $\frac{13 \cdot 896}{1 \cdot 836}$. $\quad \frac{0 \cdot 879017}{1 \cdot 189453}=18 \cdot 786$.

[^14]The expectation entertained that Lloyd's method would give better results than Fox's was not borne out by my experience. Each has its advantages and its disadvantages; but the simplicity of the former, and its less liability to instrumental derangement, would probally give it a preference, if a greater number of needles than two were supplied. Sir E. Sabine's opinion was expressed as follows :-
'I expect that you will find Lloyd's intensity needles give you in rery high latitudes more exact results than Fox's. You will require great exactness in the intensity in your journeys. Guided by Ross's observations in the S. Hemisphere, I am led to suppose that your most important ground for the intensity observations will be the strip of territory comprised between the 80th and 100th of W. Iongitude, and N. from the 40th parallel of latitude-that in 47° or thereabouts of latitude you will have $1 \cdot 9$ or thereabouts of intensity, and that in the great space from thence to 70° the changes will not go beyond 2.0 or 2.05 . But it would be very desirable to ascertain where this maximum is situated ; it will be found, as I have already said, between longitude 80° and 100°, and between 47° and 70° latitude. The line of the variation and the culminating points of the curves of dip and intensity will be found between these longitudes. ${ }^{1}$
' We shall be very glad to receive your first essay in observing disturbances with the Transportable.
'(Signed) Edward Sabine.'
October 14, 1844.

13. Fox's Dip Circle.

The dip circle of Mr. Robert Weare Fox was devised in 1834, ${ }^{2}$ and used for the first time in any remote region by the late Captain Owen Stanley, R.N., in Back's Aretic voyage of 1836. Being especially for use at sea, it was much employed in the Antarctic voyages of Sir James Ross. I had myself observed with it daily in my voyage home from St. Helena, and enjoyed the great advantage of further practice and instruction from Mr. Fox himself, at his residence of Penjerrick, near Falmouth, in the same year. The instrument, as then turned out by George, of Falmouth, was very
${ }^{1}$ It was actually found in lat. 5219^{\prime}, long. $91^{\circ} 59^{\prime} \mathrm{W}$. The writer had assigned, in his Erperiments to determine the Figure of the Earth (1825, p. 489), lat. $60^{\prime} \mathrm{N}$. and long. $80^{\circ} \mathrm{W}$., as the approximate position. The present conjecture, although not strictly accurate, is a remarkable evidence of advance in knowledge.
${ }^{2}$ See Sturyeon's Annals of Electricity, iii. 1839, p. 288.
perfect, but easily put out of order. The bearing points of the axles were minute cylinders of steel, resting in jewels like those of a watch. Each jewel consisted of two parts, a ring of ruby and a plane of ruby facing it. The rings were very apt to get broken, and their edge to be chipped in the operation of putting in the needle. In this way two sets were rendered unserviceable, the axles themselves were renewed three or four times before Mr. Fox was satisfied. This operation was performed by drilling out the old axle and inserting a piece of steel wire, which was afterwards turned true ; I also carried a spare axle. Mr. Fox did not allow his needles to oscillate. The axle was made very nearly the gauge of the ring, and he considered that the friction should be sufficient to bring the needle to rest almost immediately. An ivory rubber was furnished, to be applied to the axle-carrier, by which a gentle vibration was set up, to assist the needle in finding its true magnetic direction. The needles were balanced with great precision, but as Mr. Fox himself pointed out, they were hable to small variations in the direction of their magnetic axis. ${ }^{1}$

I sulbjoin on the pages following a memorandum of results oltained with my instrument before and after its employment in the North-West.

The several results are collected below.

I. At Falmouth, Dip ascertained by deflection, Needle C . 6858.7				
II.	,	," from angles with	ights	$6850 \cdot 7$
III.	""	" "	Needle A	$6847 \cdot 4$
	At Woolwich,	by weights	",	6858.8
V.	"	by deflectors	,	$6910 \cdot 4$
VI.	,	;	,	$69 \quad 1 \cdot 0$
VII.	"	"	"	$6858 \cdot 5$
VIII.	"	hy weights	Needle C	691.0
IN.	,	,	;,	$6859 \cdot 8$
X.	"	"	"	$69 \quad 4.0$

These results show that with a new instrument the mean dip) may be inferred from the angles of deflection, given when weights of 2 to 4 grains are applied, without serious error. The greatest difference is $-11^{\prime} \cdot 7$, and if we take the dip at Woolwich as $69^{\circ} 1^{\prime} \cdot 9$ (as given by obserrations with Gambey's circle) the mean by Fox only differs from it by $4^{\prime} 5$.

[^15]Table IV.
A. Results with Fox's Dip Circle, before Travelling.

June 30	Falmouth Needle A III．（c）Ne	60	Appro	$2 \cdot 0$ － 2.5 3.0 mate		$\begin{array}{r} 96 \\ 4118 \\ 4118 \\ 9645 \\ 4118 \\ 10353 \\ 33 \\ 1043 \\ 104 \\ 33 \\ 113 \\ 24 \\ 24 \\ 114 \\ 112 \\ 25 \\ 24 \\ \hline \quad . \\ \hline \end{array}$	$\left\lvert\, \begin{array}{llll} \} & 68 & 42 \cdot 5 \\ \} & 69 & 1 \cdot 5 \\ \} & 68 & 43 \cdot 0 \\ \} & 68 & 39 \cdot 0 \\ \} & 68 & 51 \cdot 5 \\ \} & 68 & 47 \cdot 0 \end{array}\right.$	$6852 \cdot 0$ $6841 \cdot 0$ $6849 \cdot 2$	$6847 \cdot 4$
July 7 （1）	Woolwich Needle A IV．（d）N	58.5 － edle A	二 Appro	$\stackrel{\square}{2 \cdot 0}$ $2 \cdot 5$ 3.0 mate	E． W． E． W． E． W． E． W．		$\|$69 $14 \cdot 8$ 69 $0 \cdot 3$ $\}$ 68 $46 \cdot 5$ $\}$ 69 $3 \cdot 1$ $\}$ 69 $10 \cdot 3$ $\}$ 67 $50 \cdot 7$ $\}$ 69 $19 \cdot 6$ $\}$ 68 $46 \cdot 2$. . .	\} 697.5 \} 6854.8 \} $69 \quad 2 \cdot 9$	69 7.5 6858.8
July 8 （1）		二	二	$\overline{\text {－}}$	E． W． E．at 40° W．	$\begin{gathered} \text { - } \\ 8733 \cdot 5 \\ 5018 \cdot 7 \\ 8746 \cdot 7 \\ 5054 \cdot 5 \end{gathered}$	$\|$69 $13 \cdot 7$ 69 127 $\}$ 68	$\}$69 $63 \cdot 2$ 69	

Table IV.-A. Results with For's Dip Circle, before Travelling-continued.

July 8			Both Deflect	E. W. A)		$6857 \cdot 4$ $6914 \cdot 3$.\quad.	$\begin{array}{ll}69 & 59 \\ . & \end{array}$	691.0
July 8 (1)	IX. Approximate	二 ip by	$2 \cdot 0$ $2 \cdot 5$ $3 \cdot 0$ eight	$\frac{\mathrm{E} .}{\mathrm{w} .}$ E. w. E. w.	$\begin{array}{r} 10213 \cdot 0 \\ 3558.7 \\ 10221.0 \\ 3550.0 \\ 11147.0 \\ 2518.7 \\ 11238.2 \\ 2541.7 \\ 124862 \\ 1333.5 \\ 12426.3 \\ 1348.5 \end{array}$	$\begin{array}{ll}69 & 5.8\end{array}$ $695 \cdot 5$ $6830 \cdot 3$ 6920.0 6849.8 $697 \cdot 4$	$69 \quad 5 \cdot 6$ $6855 \cdot 1$ $6858 \cdot 6$	6859.8
July 9 (1)		ip by	$2 \cdot 0$ $2 \cdot 5$ eights	E. W. E. W. P		$\begin{array}{ccc}69 & 18 \cdot 1 \\ 69 & 9 \cdot 0 \\ 68 & 42 \cdot 5 \\ 69 & 6.7 \\ . & .\end{array}$	$6913 \cdot 5$ $6854 \cdot 6$.	694.0

14. I now turn to the observations with the same instrument after travelling to Lake Athabasca and back.

Table V.
B. Results with Fox's Circle on return.

Needle A gives a dip $4^{\prime} \cdot 8$ too great. Needle C gives one $0^{\prime} \cdot 9$ too
great, but it may be safely inferred from the above that there is sufficient coincidence between the mean position of the needle of Fox's instrument when deflected by weights, as it is in the observation for intensity, and the true angle of dip, to warrant the employment of these angles in checking the dip when otherwise determined, and especially to make the results available as corroborative evidence, when the dip by Gambey's circle indicates, by its exceptional amount, a local disturbing effect.
15. As further evidence I subjoin the results by both instruments at every station between Montreal and Fort William, except those at which, for want of time, the observation with Gambey's circle was not complete.

Table VI.
Comparison of Dip by Gambey and Fox.

Station	1843		Gambey	Fox	Difference
xit.	May 6	Chat Falls .	${ }_{7} 75 \quad 70$	${ }_{7}^{75} \quad 6$	$-{ }^{0} 77$
xv.		Grand Calumet	$7644 \cdot 4$	$7653 \cdot 2$	+ 8.8
I.		Fort Coulonge	7729.7	$\left\{\begin{array}{cc}\text { A77 } & 14 \cdot 8 \\ \text { 777 } & 18 \cdot 6\end{array}\right.$	$-14 \cdot 9$ $-11 \cdot 1$
xvit.		Pointe Baptême	$7719 \cdot 1$	77 23'2	$\begin{array}{r}\text { + } \\ +\quad 42 \\ \hline\end{array}$
XVIII.	," 10	Portage des Deux Juachims	$\begin{array}{lll}77 & 3 \cdot 8\end{array}$	7657.8	- 60
xxif.	," 11	Trou Portage .	$7724 \cdot 4$	$7711 \cdot 2$	- 132
xxiv.	" 12	Little River	7728.5	$7739 \cdot 6$	$+11 \cdot 1$
xxyi.	," 13	Lac Grand Vase .	$77 \quad 217$	$7731 \cdot 1$	+ 94
xxinit.	, 15	Recollet Falls	$7645 \cdot 4$	$7648 \cdot 9$	+ $3 \cdot 5$
xaxy.	" 16	Pointe aux Croix	$7631 \cdot 3$	not observed.	
extriil.		Lake Huron		77104	+ 4.8
xim.	", 18	Snake Island	$77 \quad 5.5$	7657.0	- 8.5
x ${ }^{\text {cy }}$, 19	Tessalon Point	76 59•3	$\begin{array}{ll}77 & 4 \\ 7\end{array}$	+ 5.5
L.	,, 20	Pointe aux Pins .	$7713 \cdot 4$	$7712 \cdot 1$	- 1.3
LI.	" 21	Pointe au Crêpe	$7711 \cdot 5$	7747	- $23 \cdot 8$
LiIII.	, 23	Michipicoton	$\begin{array}{ll}78 & 63\end{array}$	7844	- 19
LVIII.	" 24	Otter Island	79436	$7932 \cdot 8$	- $10 \cdot 8$
${ }_{\text {rixi }}$	", 25	Pic Fort	78458	$7840 \cdot 8$	- 50
Lxiv.	" 27	Terre Platte	$78 \quad 53 \cdot 6$	7847%	- 63
LxTiII.	" 28	Pointe Tonnerre .	$7823 \cdot 2$	78300	+ 6.8
Lxix.	," 29	Fort Williun	$7810 \cdot 0$	$77 \quad 59 \cdot 6$	$-10 \cdot 4$
		Mean difference			+ 75

The anomalous dips given by Gambey on May 15 and 24, one in defect, the other in excess, are both supported by Fox, proving at once the fact of local disturbance, and the value of a check. The same will be found in many other cases.
16. Complete observations of dip with Fox's circle were made at nineteen stations in Canada and the United States by me, and at
five stations by Lieutenant Younghusband: ${ }^{1}$ but the instrument was rarely so used in the North-West. The time available was generally only enough to obtain an observation for intensity. I relied for the dip on Gambey's circle.

The instrument was also furnished with a needle (B) expressly for reversal, for the same reason that use was not made of it, but I employed it at five stations for intensity.

The following notes from my observation book show some of the perplexities of a magnetic observer out of reach of skilled mechanical assistance.

$$
\text { ' Norway House, August 9, } 1843 .
$$

- Needle A worked with very tolerable freedom, not as a positively good one, but not as a positively bad one. The irregularity with the weight of 4.0 grains is what has been noticed at all recent observations, and seems due to a bruise on the axle.'
'The centering of the jewels appears to have got out of position. The levels were brought to good adjustment previous to the last observation. Needle B, supplied as a reversing needle, and not hitherto used, was suspended, and the following observation ma'e, for the base of an additional series, commencing from this place.'

Table VII.

Therm.	Weight	Face	Readings	Partia	ans	Dip
87	gr. 2.0	E.	$10630 \cdot 5$	\bigcirc	-	- 1
			5615		$8119 \cdot 2$	
$8 \cdot 7$	-	W.	$\left.\begin{array}{rrr}105 & 23 \cdot 2 \\ 57 & 12 \cdot 8\end{array}\right\}$	8120.5	81192	
87	$2 \cdot 5$	E.	11114.4			
			48535		$8045 \cdot 3$	
$8 \cdot 8$	-	W.	$\left.\begin{array}{rrr}112 & 38 \cdot 6 \\ 49 & 44.8\end{array}\right\}$	8111.7 ,	80453	
$8 \cdot 8$	$3 \cdot 0$	E.	$\begin{array}{ll}119 & 1 \%\end{array}$			
			$4149 \cdot 7$,		81117	
$8 \cdot 8$	-	W.	$\left.\begin{array}{rrr}120 & 47 \cdot 3 \\ 43 & 8 \cdot 5\end{array}\right\}$	80256	81	
$8 \cdot 8$	$4 \cdot 0$	E.	$\begin{array}{lll}136 & 0 \cdot 0\end{array}$			
			$2237 \cdot 3$		8093.5	
$8 \cdot 8$	-	W.	13812.5	8128.4	8023.5	
			24443			
Mean Dip by Weights . The Mean Dip by Gambey was				. \cdot	-	$80 \quad 54 \cdot 9$
				. .	.	$81 \quad 8 \cdot 8$

' Needle B did not work freely. It ceased to vibrate almost instantly, and although the readings with the jewelled arm in

[^16]various positions did not differ much, in one or two of them, for example, with 4.0 grain weight, face W., the friction of the jewelled arm appeared to command the position of the needle.'
' Needle C was again tried. It was very irregular, and mored with the arm, settling in positions 2° or 3° apart. I, therefore, condemned the axle, and substituted a spare axle for it.'

With this axle the needle performed pretty well, and I used it at twenty-six stations.

The results with needles B and C, which have not before been published, are here included. Sabine made use of the latter only so far as to check the value given for Norway House by needle A. We are concerned, however, to ascertain the relative force of the earth's magnetism at points widely apart. The difference is in quantity minute. Its determination is a matter of delicacy, and the more eridence producible the more satisfactory must be the conclusion. Individual results may be more or less affected by instrumental imperfection ; nerertheless if the method is unexceptionable, the relative force ought to come out the more clearly from multiplied measurements; and so in fact it does, with the further advantage, already alluded to, that results of local irregularity are confirmed. Of this, Stations CXCIV, Little Rock Portage, and CCXXV, Pierre au Calumet, are remarkable examples.
17. Needle A preserved its magnetism unchanged throughout the survey, the angles of deflection by given weights being very nearly the same at Toronto in December 1844 as they were in January 1843. Thus:-

Weight	January, 1843	Temperature	December, ${ }^{1814}$	Temperature
grs.	${ }^{1 .}$,	-	${ }^{11 .}$	-
2.0	2119.0	46	$\overline{0}-7$	36.5
2.5 3.0	$\begin{array}{ll}27 & 2.3 \\ 83 \\ 8.7\end{array}$	-	26467 $3: 364$ 9	-
3%	3.39	二	39150	二
4.0	40459	-	$4640)^{2}$	-
4.5			54293	

The Series I. were adopted as base angles. For reasons to be explained hereafter, I do not make use of Series II. for direct comparison of other stations with Toronto.

[^17]Needle C lost much magnetism between February 7 and May 8, 1843, but appears to have preserved it unchanged from that date to about September 7. The axles of this needle, however, contracted rust, and it was at no time as good as A. I was twice obliged to change them. Still the observations with needle C afford an independent series of determinations of force over a large part of the route, and are here brought forward to corroborate the others.

18. Example of Reduction uith Fox's Needle A.

At the Isle d'Urval, Lachine, Station II, observed on April 30 the following angles of deflection:-

In this example the greatest difference of one of the partial values from the mean of the whole four, amounts to one two-hundredth part of the quantity.

19. Relative Horizontal Force.

The determination of the relative horizontal force by the method of horizontal vibrations, although employed by travellers like Hansteen, Erman, and Fuss in high northern latitudes in the Old World, and by Sabine himself with a dip of 88°, at Melville Island and at Spitzbergen, ${ }^{1}$ having been superseded by the discovery of methods of determining the relative total force, was not included

[^18]in the programme of observations for my surrey. But by the month of September, after four or five months' exposure, and from the effects of a journey already extending to 2,700 miles, both Fox's and Lloyd's needles began to show symptoms of deterioration. I decided, therefore, after learing Cumberland House (see Station CLXXXVIII) to add this to the other obserrations. For this purpose I had three suitable magnets, Nos. 30, 31, and 17, provided for the transportable magnetometers. There was also an oak box provided expressly for the purpose of determining the ratio $\frac{m}{\bar{X}}$, in observations of the absolute horizontal force, and I had a theodolite, by employment of which the ares of vibration could be much reduced and great precision attained in observing the times. It will be seen in the diary that the results are in general very accordant. Subjoined are the details of observation at the first station.

Table Vili.

Observed Times of Vibration at Beaver Lake, August 26, 1843. Station CLXXIVIII. Dip $80^{\circ} 34 \cdot 2$.

3 -inch Magnet No. 30. Th. 65°					8-inch Nagnet No. 31. Th. 66°				
Vibr.	Watch time	Vibr	Watch time	Interval 200 vibr	Vibr	Watch time	Vibr	Wetch time	Interval 200 vilr.
0	¢. m. $414{ }^{\text {s. }}$	200	h. m. 9 9 57 20 2	1535.5	0	$\begin{array}{cc} \text { h. m. s. } \\ 10930 \cdot 8 \end{array}$	200	$\begin{array}{ll} \text { h. } & \mathrm{m} . \\ 10 & 25 \\ 15 & 0 \cdot 1 \end{array}$	${ }_{16}^{\mathrm{m} .} \stackrel{\mathrm{s}}{30 \cdot 2}$
10	4234	210	$58 \quad 8.5$	$34 \cdot 5$	10	1020	210	-	-
20	4321	220	5856.5	35.5	20	1198	220	$2740 \cdot 8$	$1631 \cdot 0$
30	448	230	$5943 \cdot 0$	$35 \cdot 0$	28	$1149 \cdot 8$	228	28200	$30 \cdot 2$
40	$4454 \cdot 4$	240	$10 \quad 029 \cdot 8$	35.4	38	$1239 \cdot 0$	238	2906	$30 \cdot 6$
50	4541	250	10116	$35 \cdot 0$	45	$1329 \cdot 0$	248	29595	31.5
62	$4637 \cdot 6$	262	212	$34 \cdot 4$	5	1418.0	258	$3049 \cdot 0$	$31 \cdot 0$
72	4724	27.2	259	350	6	$157 \cdot 5$	263	3138.8	$31 \cdot 3$
80	481%	280	$336 \cdot 8$	$35 \cdot 6$	78	$1557 \cdot 0$	275	32 280	$31 \cdot 0$
90	$4848 \cdot 5$	290	$428 \cdot 0$	$34 \cdot 5$	88	$16.7{ }^{\circ} \mathrm{O}$	288	38176	$30 \cdot 6$
100	$4935 \cdot 0$	300	595	34.5	98	$1736 \cdot 4$	298	$34 \quad 70$	$30 \cdot 6$
					108	$1826 \cdot 0$	308	$3456 \cdot 8$	$30 \cdot 8$
Mean time of 200 vibrations				1534.99		time o	200 vi	ibrations.	$1630 \cdot 71$
Whence of 1 vibration Corrected time				4.6749 s .	Whence of 1 vibration Corrected time				$4 \cdot 95898$
				$4 \cdot 6671 \mathrm{~s}$.					49447 s

The corrections applied are-(1) To standard temperature of 50°; (2) For the torsion of the suspension thread; (3) For are: the are on commencement was usually under 10°; (4) For the rate of the
watch (see the next Section). In the above examples an interval of twelve vibrations was allowed to pass, by inadrertence, after the 50 th of bar 30 ; and the eighth was observed after the 20th, with bar 31, instead of the tenth. These little irregularities have no effect whatever on the result.

The value of K-the moment of inertia of the suspended magnet and its stirrup-having been ascertained once for all,' and the value of m-the magnetic moment of the bar at the time of observationbeing also known, the force can now be computed.
20. Example.-Bar 30. August 26, 1843. Th. 65°.

Observed mean time of one tibration ${ }^{8} \cdot 6749$. . . $\log 0 \cdot 669777$
Correction for rate and arc 99999941
$\frac{2}{0 \cdot 339436}$

Correction for torsion and reduotion to 50°. . . . 9.99665

π^{2} K bar 30 $1: 334089$
$\frac{\pi^{2} \mathrm{~K}}{\mathrm{~T}^{2}}=m \mathrm{X}$. 9.995988
m on August $26=0.4289$. 9.632 .256
\therefore Horizontal foree in absolute value $=2 \cdot 3101 \quad . \quad=\overline{0.363639}$ Observed dip $80^{\circ} 34^{\prime} \cdot$. secant $=0.785573$
\therefore Total force in absolute value $\phi=14 \cdot 100 . \quad . \quad=\overline{1 \cdot 149205}$
The probable error of the observed mean time of one vibration is small, and so also the effect of such error on the resulting values of the horizontal or total force. In the present example it is as follows:-

$$
\text { Bar } \begin{gathered}
\begin{array}{c}
\text { Probable } \\
\text { error of } t
\end{array} \text { Effect on X Effect on } \phi \\
\text { s. } \\
31
\end{gathered} \pm 0 \cdot 0046 \pm \cdot 0046 \pm \cdot 025
$$

I suljoin the value of the probable error of t for successive observations of No. 30 in 1844, one magnet being taken for all.

[^19]Table IN.
Probable Errors of the observed mean time of one Tibration of a suspended 3 -inch magnet, No. 30 ; arc at commencement about 10°, at the end of 300 vibrations about 5°.

Date	Station	No.	$\begin{aligned} & \text { Observed } \\ & \text { time vo } \\ & \text { tibration } \end{aligned}$	昱	$\stackrel{\text { Error }}{ \pm}$	Effect of Error		Dip
						$\underset{ \pm}{\text { on } \mathrm{X}}$	${ }_{\text {on }}{ }_{ \pm}$	
1844				-	${ }^{\text {s. }}$ O. 00			
July 12	Fort Vermilion	cexlit.	4.9235	77	0:2	.00\%3	002	$8048 \cdot 0$
	Dunvegan	cclay.	$4 \cdot 4500$	48	180	-0023	012	$7816 \cdot 2$
Aug. 5	Lesser Slave Lake	calsis.	$4 \cdot 4508$	60	03)	-0003	003	$78 \quad 39 \cdot 0$
" 17	Edmonton . .	colixis.	$4 \cdot 2947$	47	051	$\cdot 0007$	-003	$77 \quad 542$
" 20	On Saskatchewan	celuxir.	$4 \cdot 3774$	55	034	-0005	-002	785
", 21	On Saskatchewan	ccliximif.	$4 \cdot 4325$	45	020	-0003	. 001	$783: 3$
" 22	Fort Pitt	colusitif.	$4 \cdot 4174$	$5: 3$	033	-0005	-002	78110 78
" 23	On Saskatchewan	cclaxiy.	$4 \cdot 3598$?	047	-0006	-003	$78 \quad 280$
" 24	On Saskatchewan	calixirif.	$4 \cdot 3523$	50	157	-0021	- 010	78166
" 26	Carlton House -	colixisia.	$4 \cdot 4645$	70	016	-0002	- 001	78 780 70
" 27	On Saskatchewan	ccxc.	4.5641	65	094	-0011	-006	$79 \quad 11.2$
" 29	Cumberland	claxilif.	4.7838	61	093	-000.4	$\cdot 002$	$80 \quad 20 \cdot 0$

21. It would have been scarcely necessary to go into so much detail if these observations were now published for the first time, but the reader who will turn to Plate XVII, 'Phil. Trans.,' 1846, and compare it with Table XLVIII, ilid. p. 321, will observe that these results, although given in the table, are disregarded on the map, which, as regards the western extension of the lines of equal magnetic force of 1.85 and 1.80 , is made solely dependent upon the three following assigned values:-

That these values are not likely to be correct is shown by their exceptional disagreement from the absolute determinations, a disagreement of which there is no other example in the whole series. They were obtained by comparing the angles of deflection of Fox's needle A at these stations in July and August, with the angles subsequently given at Toronto by the same weights in December, ${ }^{1}$ and this comparison is ritiated by the fact that the axles of needle A were removed at Cumberland House on August 30, and a new pair

[^20]of axles applied to that needle. These gave no satisfaction, and were thought indeed to work worse than the old ones, which were in the end replaced, after an attempt to repolish them. This necessarily broke the series. Instead of referring the above observations to Toronto in December as a base, I refer them to the observations at Lako Athabasca on July 3 as a base, and find that they now agree with the absolute determinations nearly.

Referred to Lake Athabasca base, value $1 \cdot 8348$.

This correction is borno out by the observations in British Columbia, Washington territory, and Vancouver Island, by Captain R. W. Haig, R.A., in 1858-60. The lines of total force of 1.85 and $1 \cdot 80$ in relative terms, or 14.00 and $13 \cdot 62$ in absolute measure, should hare been carried considerably further West and South than they were drawn by General Sabine in 1846. Captain Haig made the line of $13 \cdot 60$ (or 1.80) intersect the 50 th parallel, in longitude $113^{\circ} 35^{\prime}$, with which, allowing something for difference of epoch, the present revised values on the Saskatchewan and Peace River are in accord. Taking, as another test, the intersection of the meridian of 115° with the parallel of 45°, through which point the line of 1.70 was formerly drawn, Captain Haig's line of $13 \cdot 23=1.75$ passes through that point, as does the line laid down from the above observations, or very near it. ${ }^{1}$

Another feature of interest is disclosed by thus giving their due weight to the absolute determinations on the Saskatchewan. It is that a second local focus of maximum intensity occurs on that river in about latitude 53° longitude $108^{\circ} \mathrm{W}$., corresponding to one on the Churchill or English River in latitude $55 \frac{1}{2}^{\circ}$ longitude $105^{\circ} \mathrm{W} .,^{2}$ and that the direction of the lines of equal intensity must be considerably influenced by the great intrusive mass of the Rocky Momntains.

[^21]
22. Absolute Horizontal Force.

My Report on the observations of absolute horizontal force (1845) was incorporated, in an abridged form, by Lieut-Colonel Sabine in his VIIth Contribution, ${ }^{1}$ and it is not necessary to repeat all the details of observation which will be found there.

The following is a list of the stations, I add to each.
(1). The total force ϕ_{1} deduced from the vibrations alone, for a comparison with the partial results treated under the preceding section, employing an interpolated value of m.
(2). The total force ϕ_{2} deduced from the complete obserration of vibration and deflection, employing the value of m actnally observed.
(3). The total force ϕ_{3} deduced from the observations of relative force with Fox's or Lloyd's needle, which value is in every respect independent of the other.
(4). The standard value of ϕ for the station, as deduced from all the observations, in the manner explained in the next section following.

Table X.
Comparison of Values of the Total Force as deduced from different and independent observations at the principal Stations.

No. of	Station	Total Force					$\begin{gathered} \begin{array}{c} \text { Mran } \\ \text { ralue } \\ \text { aidoptel } \end{array} \\ \phi \\ \phi \end{gathered}$
				T.	$\begin{gathered} \text { By } \\ \text { static } \\ \text { necelles } \\ \phi_{3} \end{gathered}$	w	
xxxiv.	Toronto	13.100	18904	$0 \cdot 45$	-	-	13-5!\%
xlis.	Sault St. Marie	13700	$13 \cdot 824$	$0 \cdot 38$		-	18.82. 4
lisix.	Fort William ${ }^{2}$	13:956	13.945	0.75	14.185	$1 \cdot 0$	4.075
$x \mathrm{x}$.	Fort Francis	14.032	14.047	0.75	14.009	$1 \cdot 05$	14.423
c.	Rat Portare	13.921	13:64	$0 \cdot 30$	14.05:	O-60	$14 \cdot 03$
criil.	Fort Alexander	14•198	$14 \cdots 07$	$0 \cdot 45$	14.047	$0 \cdot 60$	14.098
criit.	Fort Garry	14.070	14.1006	0:30	14.00°	230	14.0
cxyeri.	Norway İouse	$14 \cdot 155$	$14 \cdot 166$	0.75	$14 \cdot 129$	$3 \cdot 4$	$14 \cdot 1: 3$
cleiti.	York Factory .	14067	14.01	$0 \cdot 30$	14.054		14098
clix.	('ross Lake	14.24	14-199	$0 \cdot 60$	1420:3	0-5	$14 \cdot 201$
claxxiif.	Cumberland 1louse	14.1.51	$141 \% 4$	045	14•142	3:30	13\%\%
colexitix.	Carlton llouse	18.73-	13% くこ	$0 \cdot 37$	-	-	13\%
colsex.	Edmonton	$14 \cdot 027$	14.05.4	045	13.982	1.0	14.000
cexi.	Lake à la Crosse	14.062	13:98:3	$0 \cdot 60$	14.028	2:30	13¢490
cexime.	Fort (hipewyan	1:900	13-48	$2 \cdot 11$	13989	195	$1: 38-7$
cexlif.	Fort Vermilion	14.072	14.061	045	14.004	1.0	1402
ccla.	Fort Dunvegan	$14 \cdot 627$	18:909	045	14.006	1.0	14.000
cocrid.	Fort liesolution	12:54	13956	0.45	-	-	1:3:405
cexer.	Fort Simpson.	$1: 846$	13.808	$1 \cdot 50$	-	-	1:3008
cexciy.	Fort Norman.	$13 \cdot(622$	$13 \cdot 153$	0:3	-	-	$1: 363$
cexciit.	Fort Good IIope	13635	$13 \cdot 631$	$0 \cdot 60$	-		13.63

[^22]23. The mean difference between the total force resulting from vibrations only, and the total force resulting from the complete observation of vibration and deflection, that is to say, the square root of the mean of the squares of 21 observed differences, is in value 0.050 nearly, (0.0298) representing about one fice-hundredth part of the quantity itself. But the mean difference between the value deduced from the complete observation of horizontal foree, and the independent values given by the relative observations, that is to say, by the use of Fox's and Lloyd's needles, is, as must be expected, somewhat larger ; it amounts in value to 0.084 , and is about $\frac{1}{16}$ nd part of the quantity itself. If the latter instruments were always in perfect order, they would deserve almost entire confidence, and the results would derive little or no additional weight by combining the less perfect determination; but that was not the case, and probally never can be the case in practice, under the circumstances of a long land journey. The best value for each station of observation under such circumstances is to be obtained by giving proportionate weight to the different results, as described in the next section. I may observe also that the exclusion of the result at Fort William in 1844 would reduce the difference to $\frac{1}{2} \frac{1}{0}$ th part.

24. Combining the Obserrations of Force.

The magnetic force having been observed, in no less than four different ways, of unequal value, and the number of observations taken at different stations having also varied considerably, it is necessary to determine some consistent way of weighting the results, (1) so as to obtain the most probable mean value for each station, and (2) to assign to this station value its proper weight when combined with others. The general principles applicable to both cases were investigated by the late Professor Humphrey Lloyd in the Report on the Magnetic Surrey of Great Britain in 1836. ${ }^{1}$ He shows that if $x_{1}, x_{2}, x_{3}, x_{n}$, be n values of the quantity x obtained by scparate and independent observations, also if a be their arithmetical mean, 'then the probable error of this mean, i.e. the limit on either side of which there are equal chances of the actual error lying,' is given by the formula
static needles, which were all observed in that year, viz. 13098, the difference is materially less. The force in 1844 was only $13 \cdot 908$; see Station LXIX.
${ }^{1}$ Fighth Report of the British Associution, 1839, p. 95 ; see also Airy on the Algebraical and Numerical Theory of Errors of Observation, p. 47.

$$
\mathrm{E}^{2}=\frac{0.4549 \Sigma(x-a)^{2}}{n(n-1)}
$$

in which $\Sigma(x-a)^{2}$ denotes the sum of the squares of the differences of the several partial results and the mean. Also the probable error of any single result ε as deduced from comparison with the rest, is given by the formula $\varepsilon=\sqrt{n} \mathrm{E}^{2}$.

The weight of the single result, and the weight of the mean, are as the inverse squares of the probable errors.
25. There are only two stations in the entire list besides Toronto at which my stay was sufficiently long to have admitted of a multiplication of observations with a view to determining probable errors. These were Lake Athabasca and Fort Simpson. ${ }^{1}$ I regret not having taken more advantage of them, but the great fatigue of continuous observation through the 24^{4} with only one assistant, often prolonged for many hours at a stretch, at intervals of only 1^{m}, may be pleaded in excuse for the omission. ${ }^{2}$ The consequence is that I cannot appeal to my own observations for the probable error of an observation of dip in such high latitudes; and as the dip enters into the deduction of total force from observations with Lloyd's statical needles, and also with the transportable magnetometers, it is a very important factor in their weight: but allowing the instrument and the observations to be on an equality, I find two series of dips which throw some light on the question: these are Dr. J. Rae's observations at York Factory in 1845-6, and the same traveller's observations in conjunction with Sir John Richardson, at Fort Confidence, Great Bear Lake, in 1848-9.

At York Factory we have the following :-

There are nine observations in February, eleven between April 1 and May 16, eight in each of the other months. We may then consider the probable error of a single observation for dip at York Factory $\pm 2^{\prime} 26$.

[^23]The observations at Fort Confidence were taken without reversing the poles. That is to say, on one day of observation the poles were direct, and on the next succeeding day they were reversed. I have coupled as many consecutive observations of the same needle as occur, which give eight complete dips in two of the months, and find :

We may therefore take $\pm 1^{\prime} 48$ as the probable error of a single observation for dip at Fort Confidence. I have already shown (p. 16), by the agreement of results by two needles, that it must have been very small at my stations.

Turning to the observations at Toronto, and taking only those in which the poles were reversed, I find as follows:

1844		Mean	E	ϵ
Jamuary	. .	75154	$\stackrel{1}{0} 41$	$\stackrel{1}{1 \cdot 25}$
February	. \cdot	75157	$0 \cdot 46$	1.30
March	. .	75145	$0 \cdot 71$	1.95
April	.	$7513 \cdot 2$	$0 \cdot 42$	1.20
May	. \cdot	75123	$0 \cdot 64$	1.82
June	- .	7511.6	0.34	1.03
July	.	$7510 \cdot 1$	$0 \cdot 66$	1.97
August	. \cdot	$7510 \cdot 1$	0.48	$1 \cdot 28$
September	. .	7517.9	0.68	1.92
October	- .	7517.9	0.71	$2 \cdot 13$
November	.	7520.3	1•10	3.1]
December	-	7519.0	$1 \cdot 41$	$3 \cdot 71$
	Mean			1.89

Whence we may conclude that the probable error of a single observation of dip at Toronto was under $2^{\prime} \cdot 0$.

In deducing the relative total force from an observation with Lloyd's static needles, an error of $\pm 2^{\prime}$ in the dip employed is generally quite inappreciable. In the most unfavourable case it amounts to little over unity in the fourth decimal.

In deducing the total force in absolute measure from a determination of the horizontal force, the effect of an crror in the dip of $\pm 2^{\prime} \cdot 0$ on the resulting force is much more considerable.

It is at Fort Confidence in absolute measure ± 0.063
Fort Simpson ± 0.056
York Factory ± 0.071
Toronto ± 0.032

This great disproportion results necessarily from the formulæ employed. For

If $\phi=$ total force,
$\mathrm{X}=$ horizontal force,
$\delta=$ the dip,
$\theta=$ the angle of deflection produced by a constant weight, then with Lloyd's needles $\phi=\frac{\cos \theta}{\sin (\delta-\theta)}$, whereas by horizontal force $\phi=\mathrm{X}$ secant δ; now $(\delta-\theta$) is usually so adjusted as not to differ much from 90°, in which case the sines vary very slowly, and in the widest deviation from 90° which occurs in the whole series, namely, at York Factory, the effect of an error of $\pm 10^{\prime}$ of dip on the numerical value of ϕ is only 0.035 , whereas, the secants increasing very rapidly, the same error increases the value of X secant δ more than ten times as much, or 0.385 .

Such being the case, the general agreement of results deduced by such dissimilar means is a proof that the crrors of observation are small.
26. The horizontal force given, is itself of unequal weight, as the observations come under two divisions:
(a) Where the result rests on vibrations only, the value of m, the magnetic moment of the magnet, not having been determined by deflection at the same station (see § 19).
(b) Where it was so determined ($\$ 20$).

In the former case the values of m have been interpolated from the observations preceding and following, and their error, if any, is very small.

The probable crror of the mean time of one vibration has been shown ($\$ 20$) to be almost insignificant.

Reviewing these various conditions, I have adopted the following scale of weights for the numerical results of total force :-
(1). From horizontal vibration only, for each magnet, 1.0 .
(2). From the same, combined with deflections, for each magnct, $1 \cdot 5$.
(3). By Lloyd's static needle when the angles wore unfavourable, 20 .
(4). The same if the angles were favourable, $2 \cdot 5$.
(5). By Fox's needle A, with which the dip is climinated:
employing four constant weights, and when the needle was in good condition, 6.0 .
(6). By Fox's needles B and C when employed, these results not haring the same direct connection with the base station, 4.0 .

The values have been assigned to the stations by thus weighting the partial results, and the stations weighted among themselves by the aggregate of the numbers, divided for convenience by 10 . The result is to give a marked preponderance to the values of the force obtained by the use of Fox's instrument, but not greater than its superiority as a means of measurement appears to justify.
27. Attcmpted Measurements of the Relative Totai Force by means of the Induction Inclinometer.
' When a bar of soft iron is held in any direction not perpendicular to that of the earth's magnetic force, it becomes a temporary magnet, by the inducing action of that part of the force which acts in its direction. The changes of the induced magnetism may be assumed to be proportional to the inducing force; and as the former may be measured by their effects, the latter become known.' ${ }^{1}$ This principle was first applied by the late Provost Lloyd in 1842, by the invention of his induction inclinometer, ${ }^{2}$ now well known, and I was provided with the first instrument of that construction which was sent out of England. I believe also that the results of my use of it at Lake Athabasca and Fort Simpson in 1843-4 were the first published; on this account I shall be pardoned for quoting at length the judgment which that amiable and gifted philosopher passed upon those results.

> Professor Humphrey Lloyd to Lieut.-Cclonel Lefroy.

April 30, 1857.
I have read very carefully your account ${ }^{3}$ of the induction inclinometer and its results; and am much pleased with your conclusions, which are skilfully and legitimately drawn (sic). I find one slight error in the deduction of the co-efficient by the deflection method, which (I believe) was my

[^24]own, and arose from the neglect of a small quantity in the approximation, which was of the same order of magnitude as those retained; it occurs on p. 44, where the quantity within the brackets should be $3 \cos ^{2} \phi-1$ instead of $\cos ^{2} \phi+1$. But as $\cos \phi$ is nearly equal to unity, the values of both are nearly the same or equal to 2 . There are some misprints which I have marked with pencil.

I am very well satisfied with your result. At the same time I suppose the most complete verification of the instrument would be a comparison of the vertical force obtained from it with that deduced from the V. F. magnetometer. I return your volume with thanks, and send along with it a little paper of mine, which gives the more correct deduction of the coefficient.
(Signed) H. Lloyd.
The question referred to in these remarks does not affect the present discussion. It occurred to me on Mackenzie's River that if the variations in the angle of deflection of the suspended magnet in a permanent instrument, under the fluctuating force of induced magnetism in the iron bar, were a measure of horary changes of the vertical component of the force, those angles themselves, if recorded in different places, must, in some way, measure the relative amount of that component which, when the dip is 65° or beyond it, is more than nine-tenths of the whole force, and at 82° is ninety-nine hundredths of it. Acting on this belief, I made it a practice in 1844, when time permitted, to ascertain the mean value of the angle of deflection produced on a suspended magnet by the induced magnetism locally present in a soft iron bar of $12 \cdot 2$ inches in length and 0.75 inch in diameter, supported in a vertical position at 5.03 inches distance from it.

The suspended magnet was 2.5 inches long. The deflecting bar was firmly fixed in a brass collar at one end, and passed through a brass socket in the frame of the instrument, in such a way tha when standing above the frame, the lower end, or North Pole, acted on the suspended magnet, and when hanging by the collar, below the frame, the upper end, or South Pole, acted on it. The centre of the collar, and consequently that part of the temporary magnet corresponding with it, was in the same plane on each revorsal. The effective pole of the bar was also at an equal distance from the axis of the magnet, above it or below it, in both cases.

The soft iron bar possessed a small amount of permanent magnetism, which tended to augment the angle of deflection of the
suspended magnet in one position and to diminish it in the other. The induced magnetism is also influenced by the temperature, but the effect being comparatively small, I have not thought it necessary in a tentative comparison to apply any correction for it. $\pm 10^{\circ}$ Fahr. correspond to $\mp 3^{\prime} \cdot 9$ in the angles.

In the subjoined table
Let $u=$ The angle of the deflection when the permanent and the induced magnetism were of the same sign.
$u^{\prime}=$ The angle of deflection when they were of the contrary signs.
$\frac{1}{2} \mathrm{D}=$ Half the difference between these two angles, being a measure of the permanent magnetism in the iron bar.
$\theta=$ The inclination at the station.
$t=$ The time of one vibration of the suspended magnet. This not having been observed, I have substituted the time of oue vibration of magnet No. 30, corrected for loss of magnetic moment between the date of observation and October 11.

Table XI.
Angles of Deflection by Induced Magnetism. The Stations arranged in order of Dip.

1844	Station	Deflection		$\underbrace{\frac{10}{20}}$	$\text { No. } 30$	θ	
Nov. 4	Sault St. Marie	I8 46.3	$\stackrel{1646}{ }{ }^{\prime} 5$	$4{ }^{\circ} 510$	$\stackrel{3}{4} \cdot 2292$	7711 7 15	1212
Sept. 29	Fort Francis	$2747 \cdot 5$	$2745 \cdot 4$	60 0 1 -	$4 \cdot 2395$	$7730 \cdot 0$	1241
Aug. 17	Edmonton Ho.	$2940 \cdot 5$	$27 \quad 249$	$\begin{array}{llll}56 & 1 & 8 \\ 7 & 8\end{array}$	$4 \cdot 3122$	77543	-1168
Oct. 11	Fort William	$3055 \cdots$	$2910 \cdot 8$	$73051 \cdot$	4-3471	7759.5	12.31
Aug. 26	Carlton	$3136 \cdot 3$	3031.0	70 0 33.	$4 \cdot 4576$	78317	$\cdot 1374$
Oct. 21	White River (1)	$3150 \cdot 6$	$\begin{array}{ll}29 & 0.5\end{array}$	155.	$4 \cdot 4082$	7831.0	- 1241
Oct. 23	" (2)	$3247 \cdot 2$	$\begin{array}{lll}30 & 5 & 7\end{array}$	55.121		$7832 \cdot 0$	1190
July 24	Dunvegan	$3244 \cdot 8$	$3038 \cdot 1$	701	$4 \cdot 4906$	$7846 \cdot 2$	-1226
Sept. 19	Fort Alexander	$3219 \cdot 1$	31467	55) 016	$4 \cdot 4898$	$79 \quad 30$	-1211
July 11	Fort Vermilion	4122.8	3882.2	32 21025	4.9483	80 8180	-1355
Sept. 7	Norway IIouse .	$43 \quad 10 \cdot 3$	40539	550	$5 \cdot 0121$	8111.2	$\cdot 1399$
July 1	Fort Chipewyan	$46 \quad 51.0$	43464	50 1 1333	5.1845	$\begin{array}{lll}81 & 36 \cdot 8\end{array}$	$\cdot 1193$
Oct. 14		$52 \quad 217$	41359	523 -		8137.6	-1626
Oct. 31		5223.7	41366				-1609
Mar. 30	Fort Simpson	$5057 \cdot 4$	$47 \quad 55.8$	$181{ }^{\circ}$		$8152 \cdot 2$	1665
May 2	"	$48 \quad 20 \cdot 2$	$45 \quad 57 \cdot 4$:37 71011		"	1541
May 25		5158.9 49 50	$\begin{array}{llll}42 & 52 \cdot 8 \\ 41 & 14.5\end{array}$	60 4 4 33.		"	$\cdot 1505$
June 12		49 50.8	4414.5	$50 \cdot 20$	5-3075		-1536
June 20	Slave L. (Big Is.)	54 55.0		75 4.424.		$\begin{array}{lll}82 & 8.7 \\ 82 & 34\end{array}$	1609 $\cdot 184$ 18
Mry 28 June 2	Fort Norman	5928.5 6245.4	$\begin{array}{cc}52 & 57 \\ 49 & 55\end{array}$	[10.	$5 \cdot 6: 17$		- 19.4
June 22	Fort Resolution	$5712 \cdot 8$	$52 \quad 25 \cdot 4$	50224.	5.58:3	8244.4	-18:2
May 29	Fort Good Hope	6121.8	5548.0	$44 \mid 247$ -	$6 \cdot 4973$	8259.9	202

By the theory of the induction inclinometer

$$
\tan u+\tan u^{\prime}=2 k r \tan \theta
$$

where $k=$ an unknown co-efficient of the vertical force Y , such that the intensity of the induced magnetism is equal to $k \mathrm{Y}$. also $r=a$ constant depending upon the distance : ${ }^{1}$ and let $p=k r$.

It appears evident by the sequence of values of p, which have been calculated in the last column of the preceding table, that this co-efficient is not a constant, but varies with the dip. On taking the means we have:

Table XII.

$\mathrm{Dip}_{\text {Between }}$	Observations	$\underset{\theta}{\text { Mean }}$	Tan	p	$p \frac{\tan \theta}{\tan \theta_{2}}$
77-78	4	$77^{\circ} \quad 40 \cdot 8$	$4 \cdot 5800$	$0 \cdot 1194$	0.1194
78-79	3	7311.9	$4 \cdot 9298$	$0 \cdot 1268$	$0 \cdot 1285$
79-80	1	79 30	$5 \cdot 1686$	$0 \cdot 1211$	$0 \cdot 1348$
80-81	1	8048.0	6.1742	$0 \cdot 1355$	$0 \cdot 1610$
81-82	5	81439	6.8813	$0 \cdot 1575$	$0 \cdot 1787$
82-83	5	82363	$7 \cdot 7048$	$0 \cdot 1905$	$0 \cdot 2009$

The irregularity in the values of $\frac{1}{2} \mathrm{D}$ in Table XI, to whatever cause attributable, are enough to obscure any regular law that may obtain as to increase in the value of p; but if we take, as abore, the mean dip of the first group of four stations $\left(\theta=77^{\circ} 40^{\circ} \cdot 8\right)$ and the corresponding mean value of $p(=0 \cdot 1194)$ for a basis of comparison, the last two columns show that p increases very nearly, but apparently not quite, in the ratio of the tangent of the dip.

The observations require to be repeated with greater attention to every precaution, but they appear to prove-
(1). That no degree of accuracy in the determination of p at a base station will enable θ to be deduced from the angles u and u^{\prime} at any other station, by the given formula

$$
2 p \tan \theta=\tan u+\tan u^{\prime},
$$

we require for that purpose a new value of p, which involves in fact a knowledge of θ itself. Lloyd himself could only obtain results of alsolute inclinution which were approximations to the truth. ${ }^{2}$

[^25](2). That for the same reason we cannot infer the relative values of Y at two stations, as might be done if p were constant. ${ }^{1}$

My observations appear to be not entirely trouble thrown away if they establish these conclusions experimentally.

28. Results.

The currature of all the magnetic lines in the part of the world we are considering is such that the method of grouping first employed with such great success by Lloyd in discussing the magnetic survey of Ireland in 1835 is not applicable. As General Sabine remarked, 'They are not straight lines on any projection; they are not parallel ; nor are they equidistant.' ${ }^{2}$ He made the attempt to combine them by the method of least squares, and his calculations, which fill many sheets, may be referred to at Kew, but he was ultimately obliged to revert to a graphical method of projection. I have also endeavoured, by taking much smaller districts, to deduce mean values for central points of a higher authority than individual results, but with the same experience: ' when the districts are taken sufficiently small to satisfy the required conditions of straightness, parallelism, and equidistance, irregularities of observation arising from station error and other causes became significant and materially affect the result.'

For the purpose of localising the focus of greatest intensity, and of determining its amount, a different course was adopted. It
${ }^{1}$ Since $\mathrm{Y}=\mathrm{X} \tan \theta$ we may substitute for $\tan \theta$ its equivalent $\frac{Y}{\mathrm{X}}$
consequently $2 p \frac{\mathrm{Y}}{\mathrm{X}}=\tan u+\tan u^{\prime}$
whence if p were constant we should have

$$
\begin{align*}
\frac{Y X_{1}}{\overline{Y_{1}}} & =\frac{\tan u+\tan u}{\tan u_{1}+\tan u_{1}^{\prime}} \tag{2}\\
\text { but } \frac{X_{1}}{X} & =\frac{t^{2}}{t_{1}^{2}}
\end{align*}
$$

let then Y at the base station be accurately determined, and for Y write A ,

$$
\text { Then } \mathrm{Y}_{1}=\mathrm{A} \frac{t_{1}^{2}}{t^{2}}\left(\frac{\tan u_{1}+\tan u_{1}^{\prime}}{\tan u+\tan u^{\prime}}\right)
$$

where all the quantities on the right-hand side may be accurately determined. p, however, not being constant, there is another factor, $\frac{p_{1}}{p}$ which cannot, as it seems, be determined, without accurately knowing θ, and if we know θ, we do not reguire the formula.
${ }^{2}$ Phil. Trans. 1846, p. 257.
being conceded that the isodynamic curves consist of a series of ovals or ellipses surrounding the point of greatest intensity, the late eminent mathematician, Mr. Archibald Smith, investigated the problem, and furnished General Sabine with the form of the equations, by which the co-ordinates of the common centre of all the ellipses, which is also the place of greatest intensity, could be determined from the observations; also its maximum value, the value of the semi-axes of the central ellipse, and their angle with the parallels of latitude be computed, all of which very laborious calculations were carried out under General Sabine's superintendence with the following results :-
a. The geographical position of the point of maximum force was found to be in latitude $52^{\circ} 19^{\prime} \mathrm{N}$., longitude $91^{\circ} 59^{\prime} \mathrm{W}$.
b. The force at this point is $1 \cdot 878$, or in absolute measure $14 \cdot 214 .{ }^{1}$ This was exceeded at three stations under local influences, and over a very limited area, but it appears to be higher than exists anywhere else over a large area.
c. The value of the semi-axes of the ellipse of $1 \cdot 875$, or $14 \cdot 191$ in absolute measure, was found to be 223 and 85 geographical miles respectively.
d. The angle which the major axis makes with the parallel of latitude was found to be $66^{\circ} 55^{\prime}$.

The position corresponds geographically to a small lake called Cat Fish Lake, about 200 miles beyond and to the N.W. of the height of land above Lake Nipigon, and is apparently easily accessible.

It seems likely that if the calculation were repeated with the slightly different numerical values I have now assigned to the force in many places, and especially with a due regard to the westerly extension of a comparative high force which I have shown to prevail on the Saskatchewan and north of it (Stations CCLX to CCLXXXVII), these elements would undergo some modification: but they rest upon eighty-two equations of condition of the form,

$$
\text { Force }=z=a x^{2}+b x y+c y^{2}+d x+e y+f
$$

and as the resulting final equations run into very large figures, there is good reason to suppose that the substantial result would remain unaffected.

This result confirmed in a remarkable manner the conclusion

[^26]to which the illustrious Gauss had been led by his 'General Theory of Terrestrial Magnetism' in 1838. ${ }^{1}$ On transferring his closed oval of greatest intensity to the map, it is found that the above ellipse occupies nearly the centre of it, in longitude, but is situated in the southern half of it.

The oval represents a force of 1750.0 , and the maximum towards the centre is 1763.7 . These values expressed in British units are 13.245 and 13.349 respectively, being materially lower than the values actually found.

The isoclinal line of 80°, which by the theory cuts the meridian of $95^{\circ} \mathrm{W}$. in latitude 52°, was found almost exactly in that place.

On the other hand, the variations were considerably out, the lines of equal variation falling to the east of their theoretical places by 4° or 5° of longitude; that even so near an approach to the truth, however, should have been made in the then state of observation is sufficiently surprising.

The polarity of the earth, considered as a magnet, appears to be less definitely localised than has been supposed. Probably, from geological causes, the forces producing a maximum of intensity are divided towards the focus, and we have three foci at least, separated by decidedly lower values:

but a much more detailed survey is required to map down the intensity hereabouts with precision.
29. The isoclinal lines laid down on the maps annesed to this volume are drawn as they were actually found, for the parpose of calling attention to an apparent relation between their deviation from regular curves, and the course of the aljacent rivers-a circumstance, so far as I am aware, not before observed. This has been done by taking the mean distance between the lines from Sabine's map, and laying down two points from each station for the two adjacent isoclinals. These points being first connected by straight lines, the curves have been drawn by eye to divide the irregularities, and to conform as nearly as can be judged to the observations. ${ }^{2}$

[^27]
30. Secular Changes.

Toronto is as yet the only spot in British America for which the rate of secular change since 1843 has been ascertained.

At that station
(a). The westerly declination increased between 1843 and 1871 from $1^{\circ} 24^{\prime}$ to $2^{\circ} 48^{\prime} \mathrm{W}$., at a mean rate of $+1^{\prime} 952$ per ammum.
(b). The dip inereased in the same period from $75^{\circ} 15^{\prime} 5 \mathrm{in}$ 1843 to $75^{\circ} 25^{\prime} \cdot 0$ in 1859, after which it declined, and was again $75^{\circ} 16^{\prime} \cdot 8$ in 1871.
(c). The total force increased from 1845 to 1849 , but has since decreased, following the change in the dip. In 1845, 13.942; in $1849,13 \cdot 952$; in 1871, $13 \cdot 776 .^{1}$

In quoting the variation obserrations of Lieutenant Blakiston, R.A., in 1857, and those of Captain Haig, R.A., in British Columbia in $1860-1$, they are reduced to the epoch 1844.0 by applying the same rate of change as was adopted by General Sabine, who took for epoch $1842 \cdot 5$ as best suited to the great body of olservations treated by him. ${ }^{2}$

There is an irreconcilable difference between Franklin's dips observed in 1819-20, and those observed in 1825-6. The former are much too great. Thus at Fort Chipewyan :

$$
\begin{array}{llllll}
\text { July } 14,1820 & . & . & . & . & 85 \\
\text { July } 24,1825 & . & . & . & . & . \\
\hline 1 & 26 \cdot 1
\end{array}
$$

It is necessary, therefore, to disregard the observations of the first voyage. ${ }^{3}$ The second royage furnishes data for comparison at mine stations.

	1825		1843-4	
Penetanguishene	A pril 18	76160	November 14, 1844	$7620 \cdot 1$
Fort William	May 11	$7820 \cdot 0$	May 29, 1843	78100
Savannah Port (S.W.end F., ;				
N.E. end L.) $\}$	May 20		e	S 21.8
Fort Frances	May 27	$7718 \cdot 1$	June 14,	75
Fort Alexander	June 6	$7847 \cdot 1$	1843-4	7858
Cumberland Ho	June 23	$8021 \cdot 1$	1843-4	80 - 20
1sle à la Crosse	July 11	79850	September 9, 184:3	80
Fort Chipewyan	July 2t	$8126 \cdot 1$	1843-4	$81: 36 \cdot 8$
Fort Simpson	Aug. ${ }^{\text {J }}$	$8153 \cdot 1$	March to May, 1844	$81 \quad 32$

[^28]The comparison points to a small increase of dip over the whole region, except at Fort William and the next station, where Franklin's dips are not consistent with any regular movement of the isoclinal lines.

Stations for comparison of variation are rather more numerous, but the uncertainty of this observation makes the conclusions individually less decisive. I do not include any of those of Franklin in which the variation was estimated from the sun's bearings at noon.

It appears that about the region of the great lakes, easterly variations were decreasing, or the line of no variation moving westward, between 1820 and 1844; while, on the contrary, in more northern regions and to the westward they were increasing; the great loops of equal variation which connect the magnetic pole in latitude $70^{\circ} \mathrm{N}$. with the pole of the earth, being under a process of expansion, of which the effect was to crowd nearer together the lines of variation of less than $15^{\circ} \mathrm{E}$. in central parts of the continent. (See p. 111, York Factory.)

Table XIlI.
Comparison of Declinations.

	1819-26	$\stackrel{\text { Var. }}{\text { East }}$	1843-4	$\underset{\text { East }}{\text { Var. }}$
Sault St. Marie	May 2	${ }_{2}^{2} 382$	Nov. 4, 1844	\bigcirc
Fort William	May 12	$717 \cdot 5$	1843-4	$547 \cdot 8$
Chien Portage, N.E.	May 18	$11 \quad 2 \cdot 8$	June 3, 1843 June 4, 1843	$\begin{array}{lll}5 & 40 \cdot 8 \prime \\ 6 & 51 \cdot 1 a\end{array}$
Savamah River	May 21	9239	June 6, 1843	8 8 8 6.3 l
Fort Francis .	May 28	$1042 \cdot 5$	1843-4	935.0
Fort Alexander	June 5	1515%	1843-4	$14 \quad 0 \cdot 4$
Lake Winnipeg nearly opposite the Dog's Head	June 2	1446.0	July 7, 1843	$2138 \cdot 3 c$
York Factory .	Sept. 1819	$\begin{array}{lll}6 & 0 \cdot 3\end{array}$	July 24-6	$90 \cdot 6$
Long Portage, Jack R. .	Sept. 24, 1819	$1110 \cdot 4$	July 19	$1236 \cdot 4$
Norway IIouse Gates	Oct. 7, 1819	1426.1	1843-4	1535.0
Cumberland House	Nov. 19	1717.5	-	-
"	May 22, 1825	$1914 \cdot 3$	1843-4	$1932 \cdot 4$
Carlton House	Jan. :31, 18:0	$2044 \cdot 8$	Aug. 25, 1844	22550
Isle à la Crosse	Feb. 1819	$2.15 \cdot 8$		
	June 27, 1825	23193	Sept. 9, 1843	$24.54 \cdot 7$
Fort Chipewyan	March 1820 July 11, 18.25	22 25 29 29	1843-4	$2845 \cdot 8$
Fort Resolution	July 30, 1825	29156	June 22, 1844	3712.5 E .
The Ramparts on Mackenzie's liver ${ }^{\text {d }}$ (Aug. 7, 1825	$44 \quad 50$	May 30, 1844	4226.0

a Franklin's Station is bet ween these two.
b This was 10 miles E. of Franklın's Station. e Local disturbance.
\boldsymbol{d} Abont seven miles to the W. of the position of Fort Good Hope in 1844, Franklin's Fort Good Hope being 100 miles nearer the month of the river. The corresponding observation entered is an imperfect one made at the Fort food Hope of my visit.

31. Stations in Canada and the United States.

Before proceeding to the connected series of observations in the North-West which form the body of the magnetic survey, it will be convenient to reproduce, in order of date, a number of observations made at different times in Canada and the United States; principally in the course of a tour I made in the latter in 1842, before proceeding to Toronto, by Lieut.-Colonel Sabine's desire, to commmicate with the eminent American observers, Bache, Renwick, Loomis, Nicollet, whose observations are embodied in his paper of 1846. The most extensive contributor, Dr. Locke, of Cincinnati, I was not so fortunate as to meet, nor Major James D. Graham, of the U.S. Corps of Topographical Engineers, to whom we owe the determination of the dip at thirty-eight stations, taken in connection with the North-East Boundary Commission, 1841-5.

The absolute horizontal force was determined at six of the following stations with a German transportable magnetometer by Meyerstein of Göttingen, on the plan of Professor Willhelm Weber. Fox's circle was used at twenty-four stations, and Gambey's circle with Lloyd's needles at fifteen stations. At ten of these a new pair of needles called L3 and L4 was employed. They were made in 1845 and gave remarkably good results.

The details of the absolute determinations have been fully published (‘ Phil. Trans.' 1846). I subjoin the results, converted into total force $\left(\phi_{1}\right)$, together with the value of the latter by the independent measurements in Table XIV (ϕ) for comparison.

1842	Station		x	δ	ϕ_{1}	\$
Sept. 7	Quebec	- -	3040	$7{ }^{7} 715$	13.780	$13 \cdot 844$
Sept. 16	St. Helen's	. .	3.064	$7710 \cdot 0$	13.795	$13 \cdot 751$
Sept. 25	New Yo k	. .	4.008	72356	$13 \cdot 393$	$13 \cdot 126$
Oct. 1	Cambridge	-	$3 \cdot 665$	$7416 \cdot 1$	13.519	13.458
Oct. 13	Philadelphia	- .	$4 \cdot 176$	7159.0	1:3502	1357\%
Nov. 12	Chicago	- .	4.105	$72: 93$	$13 \cdot 771$	$13 \cdot 820$
Oct. 28	Toronto	. \cdot	3.515	75156	13830	
Dec. 19	" .	- \cdot	$3 \cdot 550$	75157	13:79	$13 \cdot 96$
March 1843	"	\cdot	3541	7514.5	13.86\%	

The observer at ten stations marked I^{\prime} in the following list was Lieutenant, now Lieut-General C. Younghusband, C.B. Some of the observations have not before been published.

Table XIV.

Observations in Canada and the United States. Stations 1 to 18 were referred by Sabine to Woolwich as a Base, with value

$\begin{aligned} & \text { H } \\ & \text { B } \\ & \text { OU } \\ & 0 \end{aligned}$	
范	
	, 四
$\stackrel{\circ}{4}$	

Table XIV.-Observations in Canada and the United States.-Continued.

[^29]32. The dips at Kingston and Belleville, on Lake Ontario (Nos. 23-32), and at Prescott, on the St. Lawrence (No. 33), are among the most irregular recorded on the survey. By the mean direction of the isoclinal lines the dip should be less than 76° at each of these stations. We have, however, an unusual amount of confirmation at Kingston, where it was three times recorded. The station was at the then Artillery barracks, towards the centre of a large open parade, near the flagstaff.

The anomalous ralue of the total force at this station rests in like manner on repeated observation.

These observations of force were omitted by Sabine, although he inserted the dip, and the evidence of local disturbance was therefore incomplete.

We have not to look far for a geological cause of the anomaly at Kingston. This region of Canada is highly metalliferous. There are numerous superficial deposits of iron ore in the counties of Hastings, Addington, and Frontinac, and it is now worked in several places. ${ }^{1}$ They are, it is true, none of them very near Kingston, but this gives additional value to the proof thus afforded that the dipping needle may become a valuable instrument of geological research. At Brockville, about twelve miles west of Prescott, and at Cornwall, about forty-six miles east of that place, the anomaly disappears. ${ }^{2}$

[^30]The intensity at Cincinnati, which was the base of Dr. Locke's survey, is a little less than Sabine made it in 1846 from three independent comparisons, one of them direct (but by means of the horizontal force only), the other two indirect. He deduced 1.795 (' Phil. Trans.,' 1846, p. 314). I found it $1 \cdot 7900$ in 1849. The difference is less than 0.003 of the quantity. In these observations I had the assistance of Captain, now General W. J. Smythe, R.A.

33.-Toronto. Station A.

It has been repeatedly mentioned that the intensity of the earth's magnetic force at Toronto in 1843-4 on the relative scale was,

$$
1 \cdot 8360
$$

As this is a physical datum of importance, affecting every value given in the present volume, it may be convenient to trace here the steps by which it was arrived at, and to remind the beginner in magnetism of what the figure signifies. Captain E. Sabine's important ' Report on the Magnetic Intensity of the Earth,' in the Seventh Report of the British Association (1838), is the source of the explanation.

Between the years 1798 and 1806 the illustrious Alexander von Humboldt, by means of needles transported from South America to Europe, determined the intensity at the Paris Observatory to be
opportunity of placing on record some unpublished determinations of the dip at Mount Langton, Bermuda, made by me in 1872 , lat. $32^{\circ} 18^{\prime}$, long. $64^{\circ} 48^{\prime} \mathrm{W}$. The instrument was one lent by the Committee of Kew Observatory.

An identical resu't, $67^{\circ} 20^{\prime}$, was obtained by Lieut. Bromley, 1R.N. of II.M.S. 'Challenger,' upon the same pedestal, in June following; but this officer discovered an unexpected amount of local variation in Bermuda, due donbtless to the presence of a deeply underlying volcanic formation, and to the large proportion of oxide of iron in the red soil in some places.
to that of the magnetic equator, or line of no dip, in Peru, as 1•3482 to unity. He erroneously supposed at the time that there was no lower intensity than what he took for unity; it is scarcely necessary to say that a force as iow as 0.80 has since been fomnd to prevail over a considerable trac'i of the South Atlantic, as it does not in any way affect the comparison. In 1827 the late Sir Edward, then Captain Sabine, R.A., determined the value at the Chiswick Horticultural Garden, near London, to be to that at Paris as 1.0180 to unity, ${ }^{1}$ or to that in Peru as 1.3724 to unity.

It has been assumed that the intensity at Woolwich, thirteen miles east of Chiswick, is sensibly the same; and no correction has been applied for the secular change, if any, between 1827 and 1843-6. It may be inferred from the mean direction of the isodynamic lines that the force at Woolwich is a minute quantity less than it is at Chiswick, and subsequent observation has made it probable that the force in 1843-6 was a little greater than it was in $1827 ;^{2}$ but as the same secular change would doubtless embrace Paris, the relation between the two places would not sensibly alter.
$1 \cdot 3720$ then has been adopted as the force at Woolwich. Now the force at Toronto was ascertained by the writer's observations in 1842-6, which are very fully given in the 'Phil. Trans.,' 1846, to be to that at Woolwich as $1 \cdot 3380$ to unity, and therefore to the magnetic equator as 1.8357 to unity; or, as employed by Sabine, 1-8360.

But the force was also determined at Toronto in absolute measure, being in British F.S.G. units $13 \cdot 896$ (ib). Hence, to convert relative into absolute terms we have only to multiply by $\frac{13 \cdot 896}{1 \cdot 836}$, and these again may be converted to German M.S. Gr. units by multiplying by 0.46108 .

The dip has been regularly observed at Toronto, with a circle by Robinson, several times a month from 1841 to the present time; but besides this continuous series, observations were occasionally made with the dip circle of the survey. I suljoin the results, with the mean of the Observatory series (R.) for the same month.

[^31]

The close accordance of these results leaves nothing to be desired. The mean for the mean epoch of this survey 1844.0 is $75^{\circ} 14^{\prime} \cdot 7$.

The declination or variation at Toronto for 1844.0 was by reduction $1^{\circ} 25^{\prime} \cdot 5 \mathrm{~W}$. The independent series of monthly determinations began January 1, 1845, but by the declinometer readings we have for 1843 mean $1^{\circ} 24^{\prime} \cdot 7 \mathrm{~W}$.
$1844 \quad, \quad 1^{\circ} 26^{\prime} \cdot 2 \mathrm{~W}$.

D I A R Y.

SECTION I.

Montreal to the sault st. Marie.
About 530 geographical miles.
I. September 19, 1842.-On the Island of St. Helcn, Montreal, near the then Artillery barracks. Lat. $45^{\circ} 31^{\prime} \cdot 1$; long. $73^{\circ} 31^{\prime} 42^{\prime \prime} \mathrm{W} .{ }^{\prime}$ (see Table, p. 52).

$$
\text { Variation, } 8.18 \text { A.m. By Compass, card A. } 8 \quad 48 \cdot 1 \mathrm{~W} .
$$

8.44
Mean

April 25-29, 1843. -At the same place.

Total Force	Relative	Absolute	W.
Sept. 16, Fox A	1.8128	$13 \cdot 720$	(6.0)
April $25, \quad$,	1.8231	$13 \cdot 799$	(6.0)
" 28, Lloyd A	1.8215	18.786	(2.5)
29, „ B	1.8102	13.701	($2 \cdot 5$)
Mean	1.8166	$13 \cdot 755$	(1.7)

These values have been explained at p. 56. They signify that, assuming the force at Toronto to be $1 \cdot 836$, the force at St. Helen's by Fox A was $1 \cdot 818$, and assuming the force at Fort William to be $1 \cdot 860$ (sce Station LXIX), the force at St. Helen's was by Lloyd's static needle A $1 \cdot 8215$, and by needle B 1.8102 . The mean of the whole is 1.817 , equivalent to 13.755 in absolute measure. The column W. signifies weight (see p. 41). These remarks explain all future entries.
${ }^{1}$ Deduced from the longitude of Viger Square, ascertained by Captain E. D. Ashe, R.N., in 1857, to be $73^{\circ} 32^{\prime} 55^{\prime \prime}$, or $4^{\text {h }} 57^{\mathrm{m}} 12^{\mathrm{s}} \mathrm{W}$. See Geological Survey of Canada, 1857, p. 239.
${ }^{2}$ This was a marine compass used on board the 'Prince Regent' Transport in my royage to Quebec. See Phil. Trans., 1849, p. 191. It was exchanged in April for another instrument.
II. April 30.-At the Isle d'Urral or Dorral, nearly opposite La Chine. Lat. $45^{\circ} 25^{\prime}$; long. $73^{\circ} 44^{\prime} \mathrm{W}$.

There is local disturbance at this station.
May 1.-The canoes started from Isle d'Urval this day, under Mr. John Maclean, a chief trader of the Hudson's Bay Company, and no opportunity of observation was presented.
III. May 2.-Proceeded up the Ottawa, and observed about three miles below the rivulet called the R. la Graise, on the farm of one La Combe, W. bank. Lat. $45^{\circ} 33^{\prime}$; long. from the map $74^{\circ} 9^{\prime} \mathrm{W}$.

Variation at 5.30 A.m. . .Dip, Gambey No. 1 (not reversed)		$\stackrel{\circ}{8}^{2}{ }^{\prime} 6.0 \mathrm{~W}$.	
			$50 \cdot 6$
Total For	Relative	Absolute	
Fox A.	1.8334	$13 \cdot 876$	(6.0)
Lloyd A	1.8249	$13 \cdot 812$	(2.5)
	$1 \cdot 8302$	13.855	(0.85)

IV. Observed again at the camp on an island in the Ottawa, about six miles above R. la Graise. Lat. by Polaris $45^{\circ} 37^{\prime} 36^{\prime \prime}$.
V. May 3.-At Carillon, at the east end, or entrance of the Grenville canal, left bank. Lat. from the map $45^{\circ} 36^{\prime}$; long. $74^{\circ} 30^{\prime}$.

$$
\text { Variation, } 6.45 \text { A.m. } 8^{\circ} 41^{\prime} \mathrm{W} \text {. }
$$

VI. Same day at noon, near Chatham, observed. Lat. $45^{\circ} 35^{\prime} 12^{\prime \prime}$.
VII. Same day at Pointe du Chêne, left bank, about four miles beyond the upper end of the Grenville canal (Longueisle was about three miles distant S.E. l E.). Lat. $45^{\circ} 37^{\prime}$; long. $74^{\circ} 50^{\prime}$.

[^32]

These values indicate local disturbance.
VIII. May 4.-On Lot 32, Alfred Tornship, right bank. Lat. $45^{\circ} 37^{\prime}$; long. $75^{\circ} 0^{\prime}$.

Variation, 8.0 A.m. $6^{\circ} 58^{\prime} \mathrm{W}$.
IX. Same day, at Foxe's Point, right bank. Lat. about $45^{\circ} 32^{\prime}$; long. $75^{\circ} 22^{\prime}$.

X. May 5.-On the farm of W^{r}. Templeton, left bank, about six miles below Bytown (now Ottawa), probably the place now called Templeton. Lat. $45^{\circ} 29^{\prime}$; long. $75^{\circ} 36^{\prime}$. Ottawa is one of the places the longitude of which has been ascertained by telegraph $75^{\circ} 42^{\prime} 4^{\prime \prime}$, the place of observation being on Barrack Hill, 120 yards E . of the flagstaff (Captain Ashe).

Variation, 7.30 A.M. $8^{\circ} 28^{\prime} \mathrm{W}$.
XI. Same day at $A y l m e r$, left bank, twelve miles abore Bytown ; the spot was about 60 yards S.E. of the only inn in the place. Lat. by Polaris $45^{\circ} 15^{\prime}$; long. $75^{\circ} 58^{\prime}$.

Dip (poles reversed, as is the case in all the observations that follow) $76^{\circ} 41^{\prime}$

Total Force		Relative	Absolute
Lloyd A	W.		
1.8280	18.836	(0.25)	

Sir George Simpson, the Governor of the Hudson's Bay Company, here overtook and passed the Brigade on his way to the interior. By his authority Mr. Maclean adopted a new arrangement. He placed at my disposal the services of two young voyageurs, named Edouard Genereux and Pierre Roubillon, to carry the instruments over Portages, pitch my tent, and br otherwise useful, and the canoe in which I had my passage was detached, with a view to give me time to complete observations. It was an improvement on the previous arrangement, but still very insufficient. It proved in fact impossible to reconcile the necessities of observation with the rapidity of adrance indispensable to the Brigade. We were a con--stant source of anxicty, as any accident to us would have involved much
inconvenience and delay to the whole expedition. This arrangement lasted no further than Fort William.
XII. May 6.-At the Chat Falls or Portage des Chats. Lat. adopted $45^{\circ} 26^{\prime}$; long. $76^{\circ} 32^{\prime}$.

Dip, Gambey 1, midday		$75^{\circ} 7^{\prime} 0$	
Total Force	Relative	Absolute	w.
Fox A	$1 \cdot 8481$	$13 \cdot 988$	(6.0)
Lloyd B	$1 \cdot 8337$	$13 \cdot 879$	(2.5)
	$1 \cdot 8418$	13916	(0.85)

XIII. May 7.-At the Portage du Fort. Lat. adopted $45^{\circ} 36^{\prime}$; long. $76^{\circ} 53^{\prime}$.

$$
\text { Variation, } 8 \text { 4.x. } 10^{\circ} 11^{\prime} \text { W. }{ }^{1}
$$

This observation, taken in connection with the abnormal dip and force at the preceding station, which was about seventeen miles distant, indicates a considerable degree of magnetic disturbance in this part of the Ottawa.
XIV. Same day at noon at the Décharge d'Argile. Lat. observed $45^{\circ} 39^{\prime} 36^{\prime \prime}$.
XV. Same day at the south end of the Portage de Grande Calumet, opposite Callumette Island. Lat. $45^{\circ} 45^{\prime}$; long. $76^{\circ} 40^{\prime}$.

Dip, Gambey 1, p.m. $76^{\circ} 44^{\prime} 4$

Total Foree		Relative	Absolute	W
Fox A .	\quad.	1.8276	13.832	(0.6)

XVI. May 8.-Arrived at Fort Coulonge. By observation at noon. Lat. $45^{\circ} 54^{\prime} 54^{\prime \prime}$; long. $76^{\circ} 45^{\prime}$.

Dip Gambey 1 . Fox A gave		- ${ }^{\circ} 729.92$	
Total Force	Relative	Absolute	w.
Fox A	$1 \cdot 8392$	13.920	(6.0)
C	$1 \cdot 8384$	13.914	(4.0)
Lloyd A	1-8424	13.951	(25)
	1.8380	13.911	(1-25)

Fox's ncedle C, here first available, is reduced to Fort William as a base, with value 1.8601 (see Station LXIX).
${ }^{1}$ Formerly published $5^{\circ} 11^{\prime}$ W. (Phil. Trans., 1872, p. 382). The original sights being lost, I cannot verify the calculation, but I give the value as it stands in my MS., and which I believe to be correct as observed.
${ }^{2}$ This dip may be slightly in excess; the instrument was noticed at the end to be a little out of the meridian.
XVII. May 9.-At Pointe Baptême, about ten miles above Fort Allumettc, or Fort William on some modern maps. It is apparently in the township of Esher. Lat. from a map $46^{\circ} 5^{\prime}$; long. $77^{\circ} 26^{\prime}$.

XVIII. May 10.-Upper end of the Portage des Deux Juachims. By observation at noon. Lat. $46^{\circ} 12^{\prime} 4^{\prime \prime}$; long. $77^{\circ} 40^{\prime}$.

Dip Gambey 1, 11 A.m.		. .	$77^{\circ} 3^{\prime} 8$
Total Force	Relative	Absolute	w.
Fox A	$1 \cdot 8265$	$13 \cdot 824$	(6.0)
Lloyd A	1.8290	$13 \cdot 843$	(2.5)
	1.8272	$13 \cdot 830$	(0.85)

XIX. Same day.-At the Portage du Roche Capitaine. By Polaris. Lat. $46^{\circ} 15^{\prime}$; approximate long. $77^{\circ} 45^{\prime}$.

From this date onwards my original sights have been preserved, and, with a few exceptions, where they have become illegible, have been gone over and re-worked.

May 11.-Before leaving the last camp observed :

$$
\begin{aligned}
& \text { Variation, } 5.10 \text { A.m. } \stackrel{\circ}{5}_{5}^{2} 25.8 \mathrm{~W} \text {. } \\
& \text { " } 5.16 \text {, } 4519 \\
& \text { Mean } 58.8
\end{aligned}
$$

XX. Same day.-On halting for breakfast in the township of Aberdeen. Lat. by account, $46^{\circ} 14^{\prime}$; long. $77^{\circ} 50^{\prime}$.

Variation at 8.15 A.M. $5^{\circ} 33^{\prime} \mathrm{W}$.
XXI. Same day.-About three miles above the Portage des Deux Rivières, in the township of Aberford. Observed Lat. $46^{\circ} 15^{\prime} 26^{\prime \prime}$.
XXII. Same day.-At the Trou Portage, left bank, in the township of Labouchere. Lat. $46^{\circ} 15^{\prime}$; long. $78^{\circ} 16^{\prime}$.

Dip, Gambey 1 p.m. $77^{\circ} 24^{\prime} 4$.

[^33]XXIII. May 12.-At the Hudson's Bay Company's house, at the junction of the Mattara or 'Little River' with the Ottawa. Lat. $46^{\circ} 18^{\prime}$; long. $78^{\circ} 42^{\prime} 29^{\prime \prime}$. (Dominion Survey Department.) Variation, 7.20 м.м. $3^{\circ} 36^{\prime} 2 \mathrm{~W}$.
XXIV. Same day.-At the first portage on the Little Piier, about three miles from the last station. By observation at noon. Lat. $46^{\circ} 15^{\prime} 26^{\prime \prime}$; long. $78^{\circ} 44^{\prime}$.

Dip, Gambey 1 $\pi 7^{\circ} 28^{\prime} \cdot 5$.
$\left.\begin{array}{lllll}\text { Total Force } & & & \text { Relative } & \text { Absolute } \\ \text { Fox A } & . & . & 1.8174 & 13.984\end{array}\right)(6 \cdot 0)$
XXV. May 13.-Observed at noon on Lake Temisique. Lat. $46^{\circ} 19^{\prime} 4^{\prime \prime}$.

The name of this station does not occur on the map which accompanies the Report of the Geological Survey for 1855. We have instead, Lake de Talon, sometimes called Lake Walrond; and a little to the westward of it, Lower Trout Lake. They are in the same latitude; and the last-named is what I called Lake Temisique.

XXYI. Same day.-On the south side of Trout Lake, formerly called Lake de Grande Vase, from the name of the portage at the foot of it. Lat. $46^{\circ} 18^{\prime} \cdot 5$; long. $79^{\circ} 13^{\prime}$.

Dip, Gambey 1 r.m.

- $77^{\circ} 21^{\prime} \cdot 7$.

Total Force	Relative	Absolute	w.
Fox A	1.8425	13.945	(6.0)
Lloyd A	1.8445	18.960	(25)
	1.8431	13.949	(0.85)

XXVII. Same day.-Encamped at the Portage de Grande Vises, towards the middle of it. Lat. by observation of Polaris, $46^{\circ} 19^{\prime} 32^{\prime \prime}$; long. $79^{\circ} 20^{\prime}$.

Variation, 6.7 p.m. . . . $3^{\circ} 15^{\prime} \mathrm{W}$.
XXTIII. May 14.-At the west end of the same portage, being the one leading to the small stream by which we reach Lake Nipessing in about three miles. Lat. $46^{\circ} 18^{\prime}$; long. $79^{\circ} 22^{\prime}$.

$$
\text { Variation, } 7.47 \text { А.м. } 4^{\circ} 53^{\prime} 4 \mathrm{~W} \text {. }
$$

We entered Lake Nipessing, the height of which above the sea is 665 feet, at $9 \cdot 10$ д.м.
XXIX. Same day.-Observed at noon on the south side of the lake, at a spot marked by a cross, erected to commemorate some fatal accident. Lat. $46^{\circ} 11^{\prime} 54^{\prime \prime}$.
XXX. Same day.-A few miles further westward. Lat. $46^{\circ}{ }^{11}$; long. $79^{\circ} 48^{\prime}$.

Dip, Gambey No. 1 r.m. . . . $77^{\circ} 9^{\prime} 5$.

Total Force		Relative	Absolute	W.
Lloyd A	.	1.8313	13.861	(0.25)

XXXI. May 15.-On French River, about twenty-five miles from the lake. Lat. $46^{\circ} 5^{\prime}$; long. $80^{\circ} 20^{\prime}$. Variation, 8.0 A.m. . . . $5^{\circ} 32^{\prime} \cdot 1 .{ }^{1}$
XXXII. Same day.- On French River, about ten miles above the Ricollet's Fall. Lat. $46^{\circ} 2^{\prime} 9^{\prime \prime}$.
XXXIII. Same day. At the Ricollet's Fall. Lat. $45^{\circ} 57^{\prime}$; long. $80^{\circ} 30^{\prime} .{ }^{2}$

Dip, Gambey 1, 2 p.m.		$76^{\circ} 45^{\prime} 4$.	
Total Force	Relative	Absolute	w.
Fox A	$1 \cdot 8716$	$14 \cdot 165$	(6.0)
Lloyd A	$1 \cdot 6653$	14.118	(2.5)
	$1 \cdot 6697$	14-130	(0.85)

This result indicates a considerable amount of local disturbance. The formation is noted as a syenitic gneiss.
XXXIV. This is the place to introduce, out of the order of time, observations at Penetanguishene, on Lake Huron, the last of my stations, being the place at which I landed on my return to Canada, November 15, 1844. Lat. $44^{\circ} 49^{\prime}$; long. $80^{\circ} 1^{\prime}$. Variation not observed.

See also Table XIV.
${ }^{1}$ This result being apparently about 2° too much, I have reduced the sights separately ; they are consistent, within usual limits. There is evident local dist urbance.
${ }^{2}$ Longitudes between Lakes Nipessing and IIuron have been corrected by a map annexed to the Geological Survey of 1815-6.
${ }^{3}$ The observation on Jan. 26, 1843, was taken 'near Mrs. Wallace's Inn,' a quarter of a mile south of the barracks. The observation of November 11, 1844, was taken in front of the 'Freemasons' Arms Inn.' Whether these were the same, I cannot now say. The difference seems to indicate a different locality, a mean of $76^{\circ} 12^{\prime}$ would best agree with the isoclinal.

Absolute horizontal force by vibration only :-

	Corrected T s	m	x	¢	w.
Magnet	No. 304.0551	0.3951	:3.3218	14.061	(1.0)
",	,, 3143324	0.3505	$3 \cdot 3218$	$14 \cdot 061$	(1.0)
"	, 1745047	$0 \cdot 6.397$	3:3295	$14 \cdot 110$	(1.0)
			$3 \cdot 3224$	$14 \cdot 077$	(0.3)

In relative terms $1 \cdot 8600$.
The same bars being vibrated again at Toronto, Station A, shortly afterwards, serve to comect that station with all the others.'

January $29,1845$.	$\begin{aligned} & \text { Coirected } \mathbf{T} \\ & \mathrm{s} \end{aligned}$		m	\boldsymbol{X}	ϕ	W.
	No. 30	3.9463	0.3928	$3 \cdot 5281$	$13 \cdot 896$	$(1 \cdot 5)$
February 5, ,	,, 21	$4 \cdot 2041$	$0 \cdot 3495$	$3 \cdot 5399$	$13 \cdot 911$	(1.5)
March 8, ",	, 17	$4 \cdot 3856$	$0 \cdot 6363$	3.5358	13.894	(1-5)
				3.5346	13.900	(0.45)

The mean value of the horizontal force for 1845 by twelve months' observation with the Observatory instruments was 3.5380 (Sabine, p. 244). That of the total force taken throughout as standard is $13 \cdot 896$, differing from the above by less than $0 \cdot 0001$, of the amount, the dip employed being $75^{\circ} 15^{\prime} \cdot 5$.
XXXV. May 16, 1843.-We were detained for some hours by wind on one of the small islands in Lake Huron, lying off the mouth of French River, a little to the N. A cross was erected to mark the spot, and hence it is called Pointe au Croix; but this mark has doubtless disappeared. The island can probably be identified on the spot by its proximity to the main chamnel of the river.

By observation at noon, lat. $45^{\circ} 55^{\prime} 31^{\prime \prime}$, long., from the most recent chart, $81^{\circ} 2^{\prime} \mathrm{W}$.; Lake Huron is 580 feet above the sea.

Dip, Gambey No. 1. . . . $76^{\circ} 311^{\prime}$,			
Total Force	Re'ative	Absolute	W.
Fox A	$1.8394{ }^{2}$	13.928	(50)
, C	1.8323	13.868	$\left(4^{\prime}\right)$
Lloyd A	1.8474	13.985	(25)
	1.8369	13903	(1-15)

[^34]XXXVI. May 17.-Left the last station at 3 A.m., observed on the east shore of the lake at a point about eighteeen miles from French River, which agrees in position with George's Island.

Lat. by account, $45^{\circ} 57^{\prime}$; long. $81^{\circ} 32^{\prime} \mathrm{W}$.
Variation 7.39 A.m. . . . $1^{\circ} 25^{\prime} 6 \mathrm{~W}$.
XXXVII. Same day.-Observed at noon, in Frazer Bay, lat. $45^{\circ} 57^{\prime} 24^{\prime \prime}$.
XXXVIII. Same day, about 2 p.m., also within Frazer Bay, lat. $46^{\circ} 0^{\prime}$; long. $81^{\circ} 40^{\prime}$.

Total Force	Relative	Absolute	\%.
Fox A	$1 \cdot 8375$	13.907	(6.0)
Lloyd A	1.8371	13.905	(2.5)
	1-8373	13.906	(0.85)

XXXIX. Observed at the camp, in longitude cir $81^{\circ} 47^{\prime}$. Lat. by Polaris, $46^{\circ} 4^{\prime} 57^{\prime \prime}$.
XL. May 18.-Reached the Hudson's Bay establishment, called Fort la Cloche, at an early hour. It takes its name from the Island of La Cloche, which is some ten miles distant to the S.E., and the latter preserves the memory of some early missionary establishment of the Jesuits. The latitude was observed on my return voyage, on November 7, 1844. By Polaris $46^{\circ} 7^{\prime} 0^{\prime \prime}$; long. $82^{\circ} 3^{\prime}$.

Variation, May 18, 1843 , at 8.33 a.m. . . . $2^{\circ} 10^{\prime} \mathrm{W}$.
Dip by Gambey November 8, 1844 . . . $76^{\circ} 50^{\prime} \cdot 2$
Force not observed.
XLI. Observed the latitude a little beyond the Fort to the W. (May 18), $46^{\circ} 8^{\prime} 37^{\prime \prime}$.
XLII. Observed again on Snake Island. Lat. by account 46° 10^{\prime}; long. $82^{\circ} 40^{\prime}$.

Dip by Gambey No. 1.				. .	${ }^{\circ} 5^{\prime} 5$
Total Force			Relative	Absolute	W.
Fox A	.		1.8291	$13 \cdot 844$	(6.0)
Lloyd A	-		1.8320	$13 \cdot 865$	(2•5)
			$1 \cdot 8.300$	13.850	(0.85)

The stations of my return royage in 1844 here begin to come in between stations of the outward voyage of 1843, and will be numbered in geographical order, as one series; but to make a distinction, the dates in 1844 follow the entries.
XLIII. May 19.-Observed near the mouth of the River Mississaqui. Lat. by account $46^{\circ} 10^{\prime}$; long. $83^{\circ} 2^{\prime}$.

Variation, 7.45 A.M. $2^{\circ} 12^{\prime} \cdot 7 \mathrm{E}$.
XLIV. At Cranberry Bay. Lat. by Polaris $46^{\circ} 10^{\prime} 41^{\prime \prime}$; long. $82^{\circ} 53^{\prime}$. Observed the azimuth of the star a Aquilæ, which was favourably situated in the west, referring the angle by a theodolite to the axis of collimator magnet No. 6 .

XLV. May 19.-Observed at noon. Lat. $46^{\circ} 15^{\prime}$.
XLVI. Observed again at Tessalon Point, a long promontory at the mouth of the small river of that name. Lat. $46^{\circ} 17^{\prime}$; long. $83^{\circ} 33^{\prime}$.

XLVII. At a spot in St. Mary's River called Bear Camp (Campement d'Ours), reckoned about eight leagues or twenty-four miles below the Sault and sixteen miles from Tessalon Point. It is on the mainland, facing St. Joseph's Island, E. end. Lat. by Polaris $46^{\circ} 20^{\prime} 15^{\prime \prime}$; long. $83^{\circ} 50^{\prime}$. By an observation of Capella, E.

XLVIII. May 20.—At a spot on Sugar Island, in St. Mary's River, about five miles below the Sault. Lat. by chart, $46^{\circ} 29^{\prime} \cdot 7$; long. corrected, $84^{\circ} 17^{\prime}$.

XLIX. We arrived soon after at the Sault de St. Maric, 'St. Mary's' of modern maps, but made no stay upon this occasion. It was the practice of the outward-bound brigades to proceed on without delay to the next station, to avoid the temptation to desertion, and the facilities for obtaining spirits, afforded by the American frontier settlement on the opposite side of the river. I had abundant evidence of the necessity for this precaution on my return, in the death of Narcisse Arel, one of my crew, from apoplexy, the result of intoxication. The following observations were, however, then made: latitude $46^{\circ} 30^{\prime} 44^{\prime \prime}$, being $12^{\prime \prime}$ less than the latitude of the Michigan State Survey, which is $46^{\circ} 30^{\prime} 56^{\prime \prime}$. For the longitude I adopt that of the Michigan Survey of 1867, namoly, $84^{\circ} 21^{\prime} 33^{\prime \prime}$, or $5^{\mathrm{h}} 37^{\mathrm{m}} 46^{\mathrm{s} .2}$ W., although it is about 12^{\prime} to the East of the position on Bayfield's original chart, Sheet III. It agrees, however, very nearly with Franklin, who gives $84^{\circ} 23^{\prime} 7^{\prime \prime},{ }^{1}$ and has been adopted in the revised chart of Lake Superior.

Variation by collimator No. 6, November 4, 1844:-

The theodolite was carefully ezamined and readjusted between the second and third observation.

Lieutenant Lee, of the United States Topographical Engineers, obtained variation $0^{\circ} 4^{\prime} 25^{\prime \prime} \mathrm{W}$. in July $1873,{ }^{2}$ his station being

[^35]273 feet N.W. of the flagstaff of Fort Brady, whence it would appear that the line of No Variation moved W., increasing westerly and decreasing easterly variations in this quarter, between 1844 and 1872, at the apparent rate (disregarding horary corrections) of $2^{\prime} \cdot t$ per annum ; and on turning to the Toronto observations for the interval, ${ }^{1}$ we find that the change was continuous and uninterrupted, but with acceleration from 1869.

The dip was observed by my assistant, Corporal Henry, on November 4,1844 , but from some cause unexplained, probably the instrument not being in the meridian, the results are unquestionably wrong, and must be rejected. He made it

$$
\begin{array}{rrrrrrrr}
\text { By Gambey No. } 1 & . & . & . & . & 77 & 46 \cdot 2 \\
" & \# & 2 & . & . & . & . & 77 \\
\hline
\end{array}
$$

Dr. John Rae observed it in May 1845, and records the true value, $77^{\circ} 19^{\prime} \cdot 5$.

Horizontal force in absolute measure, November 4, 1844: ${ }^{2}$

	Corrected T	m	x	Total	w.
No. 30	$4 \cdot 2527$	0.3940	3.0289	$13 \cdot 804$	$(1 \cdot 5)$
$" 31$	-	0.3517	3.0311^{3}	$13 \cdot 814^{3}$	(0.8)
$" 17$	$4 \cdot 7196$	0.6393	3.0387	$13 \cdot 849$	$(1 \cdot 5)$
			$\overline{3.0330}$	$\overline{13 \cdot 824}$	$(0 \cdot 38)$

L. May 20 (continued).-The canoes leaving the Sault pushed on to the customary camp at Pointe aux Pins, about seven miles W.S.W. from the Fort. Latitude by observation of Polaris $46^{\circ} 29^{\prime} 52^{\prime \prime}$; longitude by the recent chart, $84^{\circ} 29^{\prime}$.

[^36]
SECTION 11 .

sault ste. marie to lake winnipeg.

About 925 geographical miles.
LI. May 21.-Entered Lake Superior and observed at Pointe au Crêpe, in a bay south of the headland called Mamainse, where we were detained by wind. Latitude by chart $46^{\circ} 58^{\prime}$; long. $84^{\circ} 44^{\prime}$. (By Bayfield, $84^{\circ} 54^{\prime}$.)

$$
\begin{aligned}
& \text { Variation, } 5.8 \text { p.M. . . . } \quad \AA_{8}^{2} 8 \mathrm{E} \text { E. } \\
& \text { Dip } 2 \text { p.ar., by Gambey . . } 7711.5
\end{aligned}
$$

The results by Fox's needle A being very anomalous, although consistent among themselves. I give them for each weight, as observed, and reduced to temperature $46^{\circ} \cdot 0$.

I cannot explain the discrepancy and omit this station. We encamped at the mouth of Montreal River.
LII. At Cape Gargantua, where I was detained in 1844 by wind. Latitude by observation at noon $47^{\circ} 36^{\prime} 53^{\prime \prime}$; long. $85^{\circ} 5^{\prime}$. (By Bayfield $85^{\circ} 15^{\prime}$.)

$$
\text { Variation by collimation } 2.15 \text { p.M. . . . } 0
$$

The variation was about 30 scale divisions, or $1^{\circ} 3^{\prime}$ more easterly next morning. The hour is not noted.

$$
\text { Dip by Gambey No. } 1 \text {. } \%
$$

Horizontal force in absolute measure :-

	Corrected T s.	m	x	ϕ	W.
Bar 30	$4 \cdot 1408$	$0 \cdot 3956$	$3 \cdot 1816$	$15 \cdot 293$	$(1 \cdot 0)$
$" 31$	$4 \cdot 4156$	$0 \cdot 3507$	$3 \cdot 1960$	$15 \cdot 290$	$(1 \cdot 0)$
$", 17$	$4 \cdot 6015$	$0 \cdot 6404$	$\frac{3 \cdot 1924}{15 \cdot 273}$	$(1 \cdot 0)$	
			$\frac{3 \cdot 1900}{15 \cdot 265}$	$(0 \cdot 3)$	

This is the greatest force anywhere observed.
These observations concur in showing a very large amount of local disturbance, as was experienced at many of the stations on this lake, and is referrible to the volcanic nature and very disturbed condition of the formations on the east and north sides of the basin of Lake Superior. Hereabouts an amygdaloid prevails. ${ }^{1}$

May 22.-No observation possible. We arrived at a late hour at Michipicoton.
LiII. May 23.-At the Hudson's Bay Post, Micmpicoton, to which I also returned on October 29, 1844. By 'Polaris,' October 29, lat. $47^{\circ} 56^{\prime} 2^{\prime \prime}$; long. $84^{\circ} 54^{\prime}$. (By Bayfield $85^{\circ} 4^{\prime}$.)

Variation by A.M. .	llimat	tober	$0 \text {, at } 9.55$	$0^{\circ} 20 \cdot 3^{2}$
Dip by Gambey No. 1, May 23, 7 a.m. " Fox A ", Gambey No. 1, October 30, 1844 No. 2				7863
				$784 \cdot 4$
				$788 \cdot 1$
				788.5
Mean				$787 \cdot 2$
Total Force		Relative	Absolute	W.
Fox A, 1843	.	1.8512	14.011	(6.0)
Lloyd B.	-	$1 \cdot 8615$	14.089	(2.5)
		$1 \cdot 8545$	$14 \cdot 034$	(0.85)

Horizontal force 1844:-

	Corrected T	m	x	ϕ	W.
No. 30	$4 \cdot 9598$	$0 \cdot 3957$	2.8693	13.957	(1.0)
, 31	$4 \cdot 6507$	$0 \cdot 3507$	$2 \cdot 8810$	$14 \cdot 014$	(1.0)
, 17	$4 \cdot 8606$	$0 \cdot 6404$	$2 \cdot 8600$	13.917	(1.0)
			$2 \cdot 8701$	13.962	(03)

Allowing proportionate weight to the two results the mean is 1.8522 or 14.015 .

[^37]LIV. May 23 (continued).--We left the Fort a little before noon. The sun had passed the meridian 25^{m} before an opportunity offered for landing. Latitude reduced to the meridian $47^{\circ} 54^{\prime} 54^{\prime \prime}$.
LV. Landed again about one mile east of the Chienne River. Lat. $47^{\circ} 58^{\prime}$; long. $85^{\circ} 16^{\prime}$.

We encamped about five miles further on.
LVI. May 24.--Observed at Le Pctit Mort, a headland opposite Michipicoton Island. Lat. by chart $47^{\circ} 56^{\prime}$; long. $85^{\circ} 40^{\prime}$.

$$
\text { Variation, } 7.40 \text { A.m. . . . } \stackrel{\circ}{3} 59.7 \mathrm{E} .
$$

LVII. The same day observed latitude at noon from the Lake Horizon $48^{\circ} 4^{\prime} 27^{\prime \prime}$.
LVIII. Landed again on the east side of Otter Island towards the S. end. Lat. by chart $48^{\circ} 7^{\prime}$; long. $86^{\circ} 7^{\prime}$.

These results are somewhat discordant, but concur in showing the presence of great local disturbance, and we learn from the geological survey that an immense volume of trap rock breaks through the sandstones and chloritic schists at L'Anse à la Bouteille (LXII), and again crops out at Michipicoton Island, a little to the south of Otter Head (see again LXIII).

We camped this night at a small bay in latitude $48^{\circ} 24^{\prime}$, Oiseau Bay on the chart of 1878.
LIX. A station of detention in 1844, a mile or two south of a stream called by the voyageurs Riviere Blanche, probably Whitemud River on the same chart. Lat. about $48^{\circ} 30^{\prime}$; long. $86^{\circ} 14^{\prime}$.

Here I was kept by stress of weather from October 23 to October 26, and imperfectly observed the Göttingen Term day, which began at 3.36 p.m. of local mean time; observations were
continued half-hourly from 9 А.м. 23rd to 8 A.m. of the 26 th. The spot was tolerably sheltered, but the weather was most inclement, ${ }^{4}$ le wind being very ligh, with repeated falls of rain or snow. ${ }^{1}$

No other observations could be taken.
LX. At the White River, White-mud River, or Rivière Blanche of the voyageurs. I was detained a this spot from the 21st to the morning of October 23, when an ineffectual effort was made to proceed, which resulted in my being again forced to land at the station last mentioned. Half-hourly observations were made here from 10 A.m. on the 21 st to 7 a.m. on October 23. Lat. by observation at noon 21 st, $48^{\circ} 31^{\prime} 39^{\prime \prime}$; longitude by the revised chart $86^{\circ} 14^{\prime}$.

Horizontal force in absolute measure by vibrations only, October 21 :-

No. 30	Corrected T	m	x	中	w.
	$\begin{aligned} & \text { s. } \\ & 4 \cdot 4104 \end{aligned}$	0.3960	$2 \cdot 8018$	$14 \cdot 116$	
, 31	4.7096	$0 \cdot 3508$	$2 \cdot 8086$	14.150	(1.0)
, 17	4.9150	$0 \cdot 6407$	$2 \cdot 7957$	14.085	(1.0)
			$2 \cdot 8020$	$14 \cdot 117$	(0.3)

LXI. May 25.-At the Hudson's Bay post at the mouth of the Prc. Latitude by obserration at noon on October 17, 1844, $48^{\circ} 35^{\prime} 20^{\prime \prime}$; long. $86^{\circ} 15^{\prime}$.

[^38]| Total Force | Relative | Absolute | W. |
| ---: | :--- | :--- | :---: |
| May 25, 1843, by Fox A | 1.8373 | $13 \cdot 906$ | (6.0) |
| Lloyd A | $\underline{1.8511}$ | $\underline{14.010}$ | (2.5) |

Horizontal force in absolute measure, October 17, 1844, by vibrations only :-

Dip applied $78^{\circ} 36^{\prime} 6$.

No. 30	Corrected T	m	x	ϕ	w.
	s.				
	$4 \cdot 4726$	0.3961	$2 \cdot 7237$	13.792	(1.0)
, 31	$4 \cdot 7741$	$0 \cdot 3508$	2.7355	13.852	(1.0)
, 17	4.9833	$0 \cdot 6408$	$2 \cdot 7193$	13.769	(1.0)
			$2 \cdot 7262$	$13 \cdot 804$	(0.3)

Allowing proportionate weight to the two results, the mean is $1 \cdot 8366$ or $13 \cdot 901$.

The large difference between the total force as determined in 1844 and the value found in 1843 , results from the difference of the dip; for if the same horizontal force is reduced with the dip recorded in 1843, the resulting value is nearly the same as before, viz. $13 \cdot 926$. As compared, however, with the stations preceding and following (Sabine's, Table XL), the horizontal force itself appears too low, the time of vibration of each bar being very sensibly prolonged.

The vibrations were observed from 8.32 to 10 A.m., the dip about noon. There is no indication of any considerable change of force in the observations at Toronto (3^{h} to 7^{h} Gött, m.т.), but a state of disturbance is clearly indicated by the readings recorded.
LXII. May 25, 1843.-Left the Pic shortly before noon, and observed for latitude on an islet off the mouth of the river. The Fort, bearing E. b S., did not appear more than two or three miles distant. By reduction to meridian, lat. $48^{\circ} 38^{\prime} 46^{\prime \prime}$. The main body of the Brigade, which had pushed on while I was thus engaged, was forcerl by the heavy sea to land on Pic Island, where I rejoined them
after a hazardous passage. About 5 o'clock we got off, and camped at L'Anse à la Boutcille, the promontory opposite Slate Island, so named in the original, but not in the later chart.

May 26. - No observations were made.
LXIII. Observed on what must from its situation have been Battle Island of modern charts. It is only noted by me as about six leagues west of Les Petits Ecrits. Lat. by chart $48^{\circ} 45^{\prime}$; long. $87^{\circ} 33^{\prime}$.

$$
\text { Dip by Gambey No. } 1 \text {. . . } 76^{\circ} 24^{\prime} 0 .^{1}
$$

Horizontal force by vibrations only :-

Bar 30	Corrected T	m	x	ϕ	w.
	$\stackrel{\text { s. }}{4} \mathrm{4} 1192$	0.3962	3 2104	$13 \cdot 650$	(1.0)
,, 31	4 4:988	$0 \cdot 8509$	$3 \cdot 2185$	13.684	(1.0)
, 17	4.5875	$0 \cdot 6409$	$3 \cdot 2083$	$13 \cdot 644$	(1.0)
			$\overline{32124}$	$\overline{18 \cdot 659}$	(0.3)

These observations concur in showing an extraordinary amount of local disturbance, the dip differing more than -2° from its normal value; parallel cases will be found in the magnetic survey of Scotland, at Oban, and Loch Scavig.

October 14, 1844.
LXIV. May 27.-Observed at a station which is only entered under the general designation of 'La Terre Platte,' and which I cannot precisely identify. It appears, however, to have been on what is now called Simpson's Island, not named in 1843. Lat. $48^{\circ} 49^{\prime}$, long. about $87^{\circ} 45^{\prime}$.

The term Terre Platte, which properly describes the shores of Black Bay, is applied loosely by the voyageurs to all this part of the lake shore west of 87°, although not at all appropriate, as it is very rugged.

Variation at 6.30 A.m. . Dip by Gambey No. l, at 8 A.m.	$\stackrel{\circ}{5}$	E.
	78	
	78	
Total Force Relative	Absolute	ซ.
By Fox A . . . 1.8535	14.028	(6.0)
, Llogd A . . . 1.8506	$14 \cdot 003$	($2 \cdot 5$)
1-8526	14.020	(0.85)

[^39]LXV. Observed again at noon, at a place called by the voyageurs Le Hangar du Diable, an island off St. Ignace, which I identify with Armour Island of the chart of 1878 . It was a very remarkable basaltic island, presenting ranges of regular columns rumning in a general direction W.b N. to E.b S. but not perpendicular; their inclination to the N . was from 15° to 40°. I have never seen any mention of this spot, which is seldom passed by travellers. Lat. observed, $48^{\circ} 45^{\prime} 16^{\prime \prime}$; long. $87^{\circ} 52^{\prime}$.
LXVI. May 28.-Observed at the east side of the deep bay (Sheesheep Bay), by Roche du Bout, still entered by me as 'The Terre Platte.' Lat. $48^{\circ} 34^{\prime}$; long. $88^{\circ} 14^{\prime}$.

This anomalous rariation shows the powerful local effect of the igneous formations around; the discrepancy between the three results is due to the sluggishness of the compass needle, which only advanced $41^{\prime} \cdot 0$ while the sun adranced $2^{\circ} 20^{\prime}$.
LXVII. On the same day observed at noon near Point Porphyry. Lat. $48^{\circ} 20^{\prime} 55^{\prime \prime}$.
LXVIII. Observed again on the west side of a small bay four or five miles east of Thunder Cape, or Point Tomnerre. The formation a clay slate. Lat. $48^{\circ} 20^{\prime}$; long. $88^{\circ} 52^{\prime}$.
Dip, by Gambey No. 1, p.m. . . . $7823 \cdot 2$
, For A gave 7830

Total Force		Relative	Absolute	W.
By Fox A	.	-1.8877	14.287	(6.0)
" Lloyd A	\cdot	-1.8570	$\underline{14.055}$	(2.5)
		$\underline{1.8786}$	$\overline{14.218}$	(0.85)

The traverse from this point across Thunder Bay is the widest on the lake, being fourteen or fifteen miles. The canoes waited for a calm, and finally reached Fort Widliam about midnight.
LXIX. At Fort William, May 29 to 31, 1843, and October 10 and 11, 1844 :-

The latter $=5^{\mathrm{h}} 56^{\mathrm{m}} 54^{\mathrm{s}} \mathrm{W}$., is the longitude here adopted.

Fox's needle C was observed at Fort William, and the angles taken as base values from Fort Colonge to Norway House.

[^40]Horizontal force by deflection and vibration :-

$1843 .$	Magnet 30	$\underset{\mathrm{S}}{\text { Corrected } \mathrm{T}}$	m	x	ϕ	1
		$49311 \mathrm{~S}^{1}$	$0 \cdot 4550$	$2 \cdot 8694$	19.993	(1•5)
	,, 31	$5 \cdot 1537$ ¢	0.4196	$2 \cdot 8718$	$14 \cdot 004$	(1.5)
Mean, 1843			- •	- .	13.998	
1844.	Magnet 30	$4 \cdot 3471$	0.3962	$2 \cdot 8804$	13.942	(1-5)
'	"	$4 \cdot 6387$	$0 \cdot 3522$	$2 \cdot 8781$	13931	(1:5)
"	17	$4 \cdot 8517$	$0 \cdot 6405$	2.8618	13.852	($1 \cdot 5$)
	Mean, 1844		- •	. .	13.90 S	(0.75)
	Mean, both years		. .	- .	$13 \cdot 945$	

Combining these values by weight, the mean is 1.8601 or 14.0785 . Sabine (Table XLVIII, 1846) gives two values, the mean of which is 14.015 , or, as in his Contribution XIII, 14.01 ; but he also adopted for the relative force $1 \cdot 8655$, disregarding the absolute results entirely (' Pliil. Trans.,' 1846, p. 274), and this was the basis of reduction of Lloyd's needles at forty stations. The relative force, which gives a total force of 14.015 , is 1.8517 , not 1.865 , therefore these values were slightly too great. I have adopted in place of either, as best supported, the value corresponding to 14.0785 , viz. $1 \cdot 8601$, with weight 1.55 .

June 1, 1843.-I left Fort Wiliam at $4 \cdot 15$ a.m., accompanied, as far as the Falls of Kákabeka, by Captain Stacke, of the 71st Regiment, who had been a fellow-passenger from Montreal. No observations could be made this day in consequence of the rain.

Here my comection with the Hudson's Bay Company's canoes was entirely dissevered. The large canoes, called Canots de maitre, then went on no further than this point; the number and length of the portages precluding their further employment, a lighter canoe, called the Canot du Nord, came into use, one of which was appropriated to myself by the directions of Sir George Simpson, with a guide and a supply of provisions, and henceforward I commanded the disposition of my own time, subject only to the necessity of getting on. The following extract from a letter addressed to Lieutenant Younghusband on June 29 explains the matter :-

It was Sir George Simpson's instructions that I should leave the Brigade here and take a canoe to myself, in order not to delay their progress. By so doing time was urdoubtedly saved to them, but lost to me, to the amount, I should say, of

[^41]one day in four or five, because while with the Brigade cooking and so forth was done for us, and it made no matter if my canoe did not get into camp till eight or nine oclock, as was usually the case. Now Corporal Henry has to do it all, and I amobliged to give him time enough, not to mention the difference in the rate at which all the movements of a single canoe are made from those of a number in company, they then vie with one another, and work with much more spirit.
LXX. June 2.-At the Portage Ecarté, or Strayed Portage F, on the old Hudson Bay route, about twenty-six miles from the mouth of the Kaministiquia. It is next beyond the Mountain Portage, lat. $48^{\circ} 25^{\prime}$ F.; long. $89^{\circ} 44^{\prime}$.
$$
\text { Dip, Gambey No. } 1 \text {. . . . } 77^{\circ} 13^{\prime} 5
$$

This result is nearly 1° too low, but the approximate dip deducible from the angles of deflection with Fox supports it, being $77^{\circ} 29^{\prime} \cdot 8$. It is evidently influenced by local causes.
$\left.\begin{array}{llclc}\text { Total Force } & & \text { Relative } & \text { Absolute } & \text { W. } \\ \text { Fox A } & . & 1.8520 & 14.017 & (6.0) \\ \text { Llord A } & . & 1.8458 & 13.971 & (2.5) \\ & & & 1.8502 & 14.013\end{array}\right)(0.85)$
LXXI. On the same day.-Observed at the Portage de l'Isle, probably the Friar's Portage of Franklin, about one mile to the north-east of the last station, lat. $48^{\circ} 26^{\prime}$; long. $89^{\circ} 42^{\prime}$, with the following anomalous results:-

Each being the mean of five sights. I can detect no appearance of error in this observation, and the amount of local disturbing force indicated is the only thing remarkable; its presence is clearly shorn by each of the elements. Thus comparing the adjacent stations we have:

		nip	Yariation	Force
リay 99	lort William	\bigcirc		
June 2	Portage licarté	\%7 78.0	6).1	1.867 .3 18516
	Portage de l'Isle	-	3918.2	-
June 3	Chien Lake	$7826 \cdot 8$	-	1.8650

Subsequent study of the geology of the neighbourhood ' has shown that the River Kaministiquia at, or very near this locality, is crossed ly a band of Laurentian rocks about four miles wide, dividing the

[^42]- copper-hearing' rocks of Lake Superior, which consist of black shales with interstratified traps, from the Huronian district, which includes Chien Lake, and which extends to Lake Shebandowan ; a broad dyke of syenite is thrown up between the Laurentian and Huronian formations a mile or two to the east of this portage. Several instances will be pointed out in the course of this survey of the occurrence of great magnetic distmrlance at the junction of different geological formations; and as lines of natural drainage are very apt to follow these lines of junction, it follows that the lines of lake or river beds are more likely to present anomaly than an open country. The line of navigation between Norway House and York Factory, and English River, present well-marked examples.

Evidence, however, that all the magnetic elements participate, however much that is to be expected, is not always producible, because the observation for variation was as a rule made at a different place from the observations of dip and force.
LXXII. Jamuary 3.-At the Bad or Maurais Portage. Lat. $48^{\circ} 29^{\prime}$; long. $89^{\circ} 44^{\prime} \mathrm{F}$.

Variation, 8.28 А.м. $5^{\circ} 48^{\prime} 0 \mathrm{E}$.
LXXIII. The same day at the south-west end of the long Chien, or Dog Portage. The poles of the dipping needle were not reversed, the magnets having been by mistake carried over the portage, but the mean readings, direct and reversed, were at this time nearly identical. Lat. $48^{\circ} 39^{\prime}$; long. $89^{\circ} 30^{\prime}$.

Dip about 4.30 p.м. , by For 1 .			78	26.8
	-	. .	78	25.0
Tutal Force	Relative	Ahsolute		w.
Fox A	1.8679	$14 \cdot 137$		(6.0)
Lloyd A	$\underline{1.8567}$	14.053		(2\%)
	1-8646	14.112		(0.85)

Relative horizontal force, October 9, 1844:-

		orrected T	m	x	¢	w.
Magnet	No. 30	$\stackrel{\text { s }}{4} \mathrm{i} 3888$	0:3064	$2 \cdot 8266$	14•11.3	(1.0)
"	„ 31	4.6810	$0 \cdot 3510$	$2 \cdot 8.37$	$14 \cdot 168$	(1.0)
"	,, 17	$4 \cdot 8717$	0.6411	2.8440	14.200	(1.0)
				$2 \cdot 8.361$	$1+160$	(0\%)

The mean according to weight is $14 \cdot 12 t$. This station was the nearest approach on the south side to the assigned position of
maximum intensity, being just within the closed oval of $14 \cdot 19$, as laid down by combination of all the observations.
LXXIV. June 4.-Observed on Chien or Dog Lake, about 708 feet above Lake Superior and 347 feet above Little Dog Lake (Dawson). Lat. $48^{\circ} 44^{\prime}$; long. $89^{\circ} 40^{\prime}$.

$$
\text { Variation, } 9.16 \text { д.м. } 6^{\circ} 51^{\prime} 1 \mathrm{l} \text {. }
$$

LXXV. On the same day, observed at noon, being still on Chien Lake. Lat. $48^{\circ} 51^{\prime} 16^{\prime \prime}$. About twenty miles beyond Chien Lake, and after passing Jourdan's Portage occurs what is called by Franklin 'Viscous Lake,' the water of which is believed by the voyageurs to oppose extraordinary resistance to a canoe. I myself took a paddle, and found the fact rery perceptible; but the cause was no doubt a tacit agreement of the men to relax their own efforts. The water is pure and tasteless, but I had no means of ascertaining its density.
LXXVI. June 5.-Observed at a small lake on the height of land at the first 'set down' above the hill, in the Prairie Portage, which is thirty miles from Chien Portage, and marks the height of land, 887 feet above Lake Superior (Dawson). It is 2 miles 5 chains long. Lat. $48^{\circ} 57^{\prime} \cdot 5 \mathrm{~F}$. ; long. $90^{\circ} 1^{\prime} \cdot 5 \mathrm{~F}$.

Dip about noon				,
		.	78	$26 \cdot 1$
" by Fox.	.	.	78	$28 \cdot 2$
Total Force	Relative	Atsolute		IF.
For A	1.8586	14.068		(6.0)
Lloyd A	1.8471	$13 \cdot 980$		(2.5)
	$1 \cdot 8568$	14.041		(0.85)

I observed again at this station on my return, October 7, 1844.
Horizontal force by vibrations only :-

	Corrected T			m	x	¢	W.
	Magnet	30	4.0838	$0 \cdot 3964$	$2 \cdot 8327$	$14 \cdot 130$	(1.0)
By	"	31	$4 \cdot 6720$	0.3510	$2 \cdot 8387$	$14 \cdot 227$	(1.0)
	,"	17	4.8705	0.6412	$2 \cdot 8314$	$14 \cdot 190$	(1.0)
					$2 \cdot 8342$	$14 \cdot 182$	(0.3)

Combining the two results the mean is 14.086 .
LXXVII. Obtained an observation at noon at the Burnt Portage between the Prairie and Sarannah portages. Lat. $48^{\circ} 57^{\prime} 18^{\prime \prime}$. October 7, 1844 .
LXXVIII. June 6.-Observed at the upper or south-west end of the Sarannah Portage. Lat. $48^{\circ} 53^{\prime}$; long. $90^{\circ} 3^{\prime} 15^{\prime \prime} \mathrm{F}$. This portage is 1 mile 41 chains long.

Variation, 7.52 A.m. $8^{\circ} 0^{\prime} 3 \mathrm{E}$.
Also at the same place, October 6, 1844:-

Variation, 7.12
And at $7.50 \mathrm{~A} . \mathrm{m}$
the sun
Mean

Palliser found $6^{\circ} 53^{\prime}$ E. in this portage in 1857.

Junc 7.-On the Lake of the Thousand Islands, observation prevented by heavy rain.
LXXIX. Encamped on Barrel Lake, about three miles west of the portage, and observed latitude by Polaris, $48^{\circ} 47^{\prime} 37^{\prime \prime}$ (October 5, 1844).
LXXX. June 8.-Observed at the west end of the French Portage. Lat. $45^{\circ} 35^{\prime}$; long. $91^{\circ} 8^{\prime} \cdot 4$. This portage is 1 mile 60 chains long.

LXXXI. June 9.-Observed at the Portage des Morts, eleven miles from the last. It is 26 chains long. Lat. $48^{\circ} 36^{\prime}$; long. $91^{\circ} 25^{\prime} \cdot 1 \mathrm{~F}$.

Variation by 3 sighte only (0.15 A.м.). . $10^{\circ} 89^{\prime} 5 \mathrm{E}$.
LXXXII. Same day. - Repeated the observation at the east end of the Portage of the Tuo Rivers (26 chains), about $2 \frac{1}{2}$ miles distant W.S.W. Lat., by an observation at noon, $48^{\circ} 34^{\prime} 59^{\prime \prime}$; long. $91^{\circ} 23^{\prime}$.

Variation, 9.56 A.m. $10^{\circ} 57^{\circ} 6 \mathrm{E}$.

At the same place :-

At the same place, October 4, 1844. Horizontal force in absolute measure by ribration only :-

			Corrected T	m	x	\$	W.
By Magnet 30			$4 \cdot 3170$	$0 \cdot 3965$	$2 \cdot 9206$	13.840	(1.0)
"	, "	31	$4 \cdot 6034$	$0 \cdot 3510$	$2 \cdot 9380$	13.929	(1.0)
	"	17	4.7976	$0 \cdot 6413$	$2 \cdot 9315$	$13 \cdot 896$	(1.0)
					$2 \cdot 9300$	$13 \cdot 890$	(0.3)

Combining these two results by weight, the mean is 14.031 .
LXXXIII. June 10.-Observed at the east end of Lake à la Crosse. Lat. $48^{\circ} 24^{\prime}$; long. $92^{\circ} 4^{\prime}$.

Variation, 7.44 A.m.	. .	7	52.5 E .
Dip, 10 A.m.	. \cdot	77	51.0
Total Force	Relative	Absolute	\ldots
Fox A	$1 \cdot 8592$	14.072	(6.0)
Lloyd B .	$1 \cdot 8550$	14.040	(2:5)
	1.8580	14.063	(0.85)

LXXXIV. The same day. - Observed at noon on the lake. Lat. $48^{\circ} 21^{\prime} 38^{\prime \prime}$.
LXXXV. June 11.-I was detained nearly the whole of this day at the second portage, leading out of Cross Lake, in consequence of having to send the canoe back with my assistant to last night's encampment, to recover something left behind. The place of observation was on a rising ground, towards the West end. Lat., by observation, $48^{\circ} 14^{\prime} 13^{\prime \prime}$; long. $92^{\circ} 25^{\prime}$.

LXXXVI. June 12.-Observed at noon, on one of the many small islands in Sturgeon Lakic. Lat. $48^{\circ} 26^{\prime} 29^{\prime \prime}$.
LXXXVII. On the same day.-Observed on another sma. granite island, towards the west end of the same lake, the first portage out of it being about two miles distant, bearing W.N.W. Lat. $48^{\circ} 27^{\prime} \cdot 5$; long. $92^{\circ} 38^{\prime}$.

LXXXVIII. On the same day.-Obtained a couple of azimuths of the sun at the further or north end of the first portage. Lat. $48^{\circ} 28^{\prime}$; long. $92^{\circ} 41^{\prime}$.

Variation, 3.55 p.... $10^{\circ} 25^{\prime} \cdot 2 \mathrm{E}$.
LXXXIX. June 13.-Observed on a granite island on the South side of Lac la Pluie, or Rainy Lake, about fifteen miles from the entrance, where I was detained some time by the weather. Lat. by observation at noon, $48^{\circ} 33^{\prime} 26^{\prime \prime}$; long. $92^{\circ} 50^{\prime}$.

Variation, 9.30 A.m.	-	1	53.6 E
Dip by Gambey	. .	77	$47 \cdot 9$
, Fox A gave	. -	77	$28 \cdot 7$
Total Force	Relative	Absolute	w.
Fox A	1.8633	$14 \cdot 130$	(2)
Lloyd A	$1 \cdot 8514$	14.012	(1)
	$1 \cdot 8597$	$14 \cdot 095$	

The same day reached Fort Frances.
XC. June 14.-At Fort Frances, the Hudson's Bay House near the outlet of the lake, and immediately above the Rapids. It is now Alberton.

The last two observations were made by Corporal Henry, and I am obliged to conclude that there is something wrong about them, as the vibrations show nothing unusual, and the determination of 1843 is supported by an observation by Dr. Rae in 1845, when he found the dip $77^{\circ} 32^{\prime}$. I assume the dip in 1844 , for deduction of force, as $77^{\circ} 30^{\prime}$. The most simple supposition is that the instrument in 1844 was not in the meridian.

	Total Force	Relative	Absolute	W.
June 14, 1843.	Fox A	1.8532	14.026	(6.0)
	Lloyd A	1.8527	14.055	(2.5)
	, B	$1 \cdot 8396$	13.923	(2.5)
		$1 \cdot 8499$	14.009	(1.05)

Horizontal force in absolute measure by vibration and deflection: 一

June 14,1843.	Magnet 30	Corrected T	m	x	ϕ	w. (1.5) (1.5)
		$4 \cdot 7821$	$0 \cdot 4554$	$3 \cdot 0478$	14.035	
	" 31	$5 \cdot 0102$	$0 \cdot 4179$	$3 \cdot 0492$	14.042	
Sept. 29, 1844.				$3 \cdot 0485$	14.037	
	Magnet 30	4.2395	0.3962	3.0306	14.002	(1.5)
	, 31	4.5242	$0 \cdot 3506$	$3 \cdot 0446$	14.069	(1.5)
	, 17	47110	$0 \cdot 6401$	$3 \cdot 0459$	$14.07 \cdot 2$	(1.5)
				$30 \cdot 404$	14.047	(0.75)

Mean of both years according to weight, $1 \cdot 8528$, or $1 \cdot 4 \cdot 023$.
XCI. June 16.-On Rainy River, North side, in what is now Township XXIII of Kewaydin. Lat. $48^{\circ} 41^{\prime}$; long. $94^{\circ} 31^{\prime}$.

Variation, 7.48 4.m. 134.5
Dip, 9.0 А.м. 7757 '4
Fox gave 78149

Total Force			Relative	Absolute	W.
Fox A	.	.	1.8891	14.298	(6.0)
Lloyd A	.	.	1.9006	14.385	$(2 \cdot 5)$
", B	.	.	1.8840	$\underline{14.260}$	(2.5)
			1.8880	14.309	(1.1)

This force is considerably in excess; the dip is also greater than would be inferred from the adjacent stations: both results point to local disturbance. The station is near the junction of Huronian schists with granitoid gneiss (Dr. Bell's 'Geological Reports,' 1872-3), a condition usually attended with magnetic irregularity (see LXXI).
XCII. On the same day observed at noon on the present Indian Reserve in Rainy River, near the Point aux Pins. Lat. $48^{\circ} 47^{\prime} 29^{\prime \prime} .{ }^{1}$
XCIII. On the same day observed at the encampment for the night, probably on Big Island in the Lake of the Woods. Lat. by Polaris $49^{\circ} 4^{\prime} 36^{\prime \prime}$; long. $94^{\circ} 43^{\prime}$.

My remāining barometer was broken by accident this day. It had been so placed in the canoe that the cistern end projected a little, unobserved, beyond the gunwale, and on approaching the shore it came riolently in contact with the overhanging stem of a tree.
XCIV. June 17.-Observed on another island in the lake. Lat. by account $49^{\circ} 19^{\prime}$; long. $94^{\circ} 40^{\prime}$. It was probably Falcon Island, or the larger island not named on the map, to the east of it.

Variation, 7.58 A.m.	- -		$13.12 \cdot 6 \mathrm{E}$.
Dip by Gambey, 9.20	А.м.	. \cdot	$\begin{array}{ll}78 & 87\end{array}$
" Fox gave	. .	. \cdot	$78 \quad 17$
Total Force	Relative	Absolute	w.
Fox A	1.8670	$14 \cdot 131$	(6.0)
Lloyd A	$1 \cdot 8576$	14.059	(25)
	1.8642	$14 \cdot 110$	(0.85)

${ }^{1}$ A chart of Rainy Riser was filed at the Foreign Office October 23, 1826, being part of a survey made under the VIIth Article of the Treaty of Ghent. It is on a very large scale, and inserts seven small streams falling into this river on one or either side :-

In longitude

Riskarko, or Kiskarke Sepi	.	.	.	94	30	north		
Rapid River	94	33	south
Steep Bank River	94	39	north
River Baudette	94	$41 \cdot 5$	south
Crooked Pine River	94	447	north	
Winter Road River	94	$45 \cdot 9$	south	
(No name)	94	47.0	north

Point aux Pins is placed in lat. $48^{\circ} 49^{\prime}$; long. $94^{\circ} 47^{\prime} 2$.

The formation was granite and mica slate, containing garnets in abundance.
XCV. June 18.-My Iroquois guide, Laurent Tewakewassin, got completely bewildered this day among the archipelago of small low-wooded islands, all singularly alike, which fills the centre of the Lake of the Woods. There was no persuading him for a long time to follow my compass in the absence of the sun, and to keep a northerly course. We lost two days in paddling rainly backwards and forwards, looking for some landmark that he could recognise.

I observed for time and longitude at the breakfast hall 7.33 a.м., but find no observation for variation. Lat. by account, with an estimation of courses to noon, $48^{\circ} 25^{\prime}$; long. $94^{\circ} 21^{\prime}$.

XCYI. On the same day observed at noon. Lat. $49^{\circ} 28^{\prime} 7^{\prime \prime}$.
XCVII. On the same day observed again on an island lying to the west of the proper chamel; estimated lat. $49^{\circ} 25^{\prime}$; long. $94^{\circ} 3^{\prime}$.

Variation, 3.14 p.m.		1226 E .	
1ip by Gambey, 1 p.a.	. -	.	16.7
, Fox gave	- .	.	152
Total Force	Relative	Absolute	w.
Fox A	1.8635	$14 \cdot 104$	(6.0)
Lloyd A	1.8418	$13 \cdot 908$	(2:5)
	1.8571	14.044	(0.85)

A very riolent thunderstorm occurred this evening. The sky wore a very threatening aspect about 6.30 , and as the guide had lost his way, and was wandering without an object, I decided to encamp. We had hardly done so, when a tremendous storm burst upon us, one which must have sent the canoe to the bottom if we had been caught in the open. It presented an unusual feature, which induces me to copy my note of it.
'The storm commenced about 7 p.m., preceded by lightning. The electric discharges were seen four times undoubtedly striking from the earth upwards, of a strange livid green. Wind sudden, very violent, the rain terrific, a burst apparently following each flash. A few minutes before $8^{\text {h }}$, just as the sun was setting, appeared a most brilliant rainbow arch, rising to 40°.'

The same phenomenon of electric discharge from the earth was observed in the Gulf of St. Lawrence August 28, 1842. 'I noticed two or three flashes dart upward from the sea horizon perpendicularly and decidedly' (MS. log).
XCVIII. June 19.-Still engaged in searching for the Rat Portage. I observed for time and longitude at 7.46 A.m. Lat. by estimation, $49^{\circ} 30^{\prime}$; long. $94^{\circ} 45^{\prime}$.
XCIX. On the same day observed at noon. L..t. $49^{\circ} 30^{\prime} 43^{\prime \prime}$.
C. June 20.-Reached at last the Rat Portage (now Kewaydin), at the outlet of the Lake of Woods, at about 8 A.m. Lat. by Tiarks $49^{\circ} 45^{\prime} 56^{\prime \prime}$; by my observation at noon, $49^{\circ} 46^{\prime} 27^{\prime \prime}$; long. $94^{\circ} 33^{\prime} 19^{\prime \prime} .^{1}$

Variation, 10.11 A.m.	- .	$\stackrel{\circ}{9} 38 \cdot 0 \mathrm{E}$
Dip by Gambey	.	$78 \quad 7 \cdot 5$
" Fox A gave	. .	$78 \quad 7 \cdot 1$
" , C ,	-	$78 \quad 0.5$
Total Force Relative	Absolute	w.
Fox A . . 1-8566	14.053	(6.0)
" C . . 1.8519	14.016	(4.0)
1.8547	14.038	(1.0)

Lloyd A (not completed).
The Gambey Dip circle was unfortunately thrown down while my attention was engaged in taking the meridian altitude of the sum, and rendered for the time unserviceable by the breakage of the glasses. It was subsequently repaired at the Red River settlement; but Lloyd's needle A, which was on it at the moment, was ruined.

At the same station, September 25, 1844, I observed the Horizontal force in absolute measure by vibration only.
${ }^{1}$ We have here a good example of the uncertainty attaching to the longitudes of well-known places to which the telegraph is not yet extended. Franklin did not observe at the Rat Portage, but by measurement on his map he places it in $94^{\circ} 29^{\prime}$. Dr. Tiarks, in determining the longitude of the north-west angle of the Lake of the Woods for the Commissioners under the Treaty of Ghent in 18:25, assumed its longitude to be $94^{\circ} 39^{\prime}$, and the longitude long accepted for that important international landmark ($95^{\circ} 14^{\prime} 38^{\prime \prime}$) was entirely based upon this assumption ; * he merely determined, with great care, the chronometric difference. I have been unable to find any authority for the longitude $94^{\circ} 39^{\prime}$; but Dr. Tiarks refers to a map of the Lake of the Woods by Mr. Thompson 'from his surveys'-Thompson is, therefore, probably the authority he followed. But the International Boundary Commission of $1872-6$ differs nearly six minutes from Tiarks, placing the northwest angle in $95^{\circ} 8^{\prime} 56^{\prime \prime} \cdot 7$, and applying 'Tiarks' difference, the Rat Portage is in $94^{\circ} 33^{\prime} 18^{\prime \prime} \cdot 7$, as given above. The large map compiled at the Topographical Depot of the War Office, 1870, from Messrs. Dawson and Napier's maps, places it in $94^{-} 33^{\prime}$.
'The Dominion map of Kewaydin, dated 1876 , in $94^{\circ} 31^{\prime}$. My chronometer obserrations, which, however, were not favourable, the sun's hour angle being too small, made it $94^{\circ} 41^{\prime} 10^{\prime \prime}$.

[^43]| By Magnet No. 30 | | | | m | Relative | ¢ | $\begin{gathered} W . \\ (1.0) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 4×3592 | 03965 | $2 \cdot 8641$ | 13.918 | |
| " | " | 31 | $4 \cdot 6466$ | $0 \cdot 3515$ | $2 \cdot 8795$ | $13 \cdot 993$ | (1.0) |
| | " " 17 48002 0612 | | | | | 2.8768 | $13 \cdot 981$ | (1.0) |
| | | | | | | 2.8734 | $13 \cdot 964$ | (0.3) |

The mean for both years is 1.8449 , or $14 \cdot 023$.
June 21.-Left the Rat Portage at 2.30 a.m., reached the Grande Décharge (Discharge of Charette's Little Rock F) at 5.25 a.m., and the White Earth Portage at 8 a.m.
CI. Observed at noon on the Winnipeg River. Lat. $50^{\circ} 9^{\prime} 7^{\prime \prime}$.
CII. About half an hour afterwards I landed on the east or left bank of the river, at an expansion of the stream amounting almost to a small lake, but without a name, to observe the Göttingen Term-day. Latitude by account $50^{\circ} 10^{\prime} \cdot 2$; longitude $95^{\circ} 12^{\prime}$. The instruments were erected and adjusted in the course of a couple of hours. The Term-day observations were commenced at $3^{\mathrm{h}} 2^{\mathrm{m}} 40^{\mathrm{s}}$ of mean time, corresponding to $10^{\mathrm{h}} 3^{\mathrm{m}} 6^{\mathrm{s}}$ of Göttingen mean time, and continued to the same hour of the day following. The weather was perfectly calm, the stillness unbroken except by the frequent cry, half wail, half shriek, of a loon in the neighbouring water. No decided magnetic disturbance occurred excepting a marked movement of declination between 9.47 and 10.14 a.m. $\left(22^{\mathrm{d}} 4^{\mathrm{h}} 48^{\mathrm{m}}\right.$ to $22^{\mathrm{d}} 5^{\mathrm{h}} 15^{\mathrm{m}}$ Göttingen), which appears to have been local, for there was no trace of it at Toronto, distant about 900 miles. There was a movement of Horizontal force at the same time (see p. 12).

At this station I observed also :-

The dip as well as the force at this station would appear to indicate a high degree of local disturbance, on which account it was omitted by Sir E. Sabine from his map. The former rests on two observations by two observers: Needle A by Corporal Henry, needle B by myself, the original entries of which I have re-examined. The exceptional force is confirmed by two sets of
deflections with bar. 30 , giving $\mathrm{X}=2.9289$; but with the dip recorded this gives $\phi=15 \cdot 597$. There is, therefore, something wrong with the dip.

June 22.-I quitted the station of Term observation at 3.45 р.м., and reached the Island Portage, or Portage de l'Isle (2) at 4.25, where we encamped.

June 23.-Left the camp at 3.30 A.m. ; Jacob's Portage 5.0 to 5.40 ; the first Woody Point Portage 7.10 to 8.45 a.m.
CIII. Encamped on the Burnt Wood Portage, which comes between the two Woody Point Portages. Observed. Lat. by Polaris $50^{\circ} 19^{\prime} 10^{\prime \prime}$; long. $95^{\circ} 36^{\prime}$.

$$
\text { September 22, } 1844 \text {. }
$$

CIV. June 23, 1843 (resumed).-Reached Sluce Falls and Portage 11 A.m. and remained to 2 p.m. Lat. by observation $50^{\circ} 14^{\prime} 41^{\prime \prime}$; long. $95^{\circ} 40^{\prime}$.

The latitude of this station is nearly 4^{\prime} more to the S. by Franklin's route, but he appears to have obtained no observation on the day he passed this portage (June 4).
CV. On the same day reached Barricr Portage. Lat. by account $50^{\circ} 11^{\prime}$; long. $95^{\circ} 43^{\prime}$.
CVI. June 24.-Left camp at 3.15 a.m., taking the route by the Pinaura Ricer, a small channel only navigable when the waters are high, which cuts off the 'Seven Portages' of the Winnipeg River, and leads into Cap Lake or Lake Bomnet.

Observed at a portage in this channel. Lat. by account $50^{\circ} 16^{\prime}$; long. $96^{\circ} 3^{\prime}$.

$$
\text { Variation, } 7.26 \text { н.m. . . . } 120^{\circ} 48^{\prime} 6 \mathrm{E} \text {. }
$$

Professor Hind noticed in 1857 an unusual amount of local attraction at an island of gneiss in Lake Bonnet, which we entered soon after. 'The needle here refused to act, and on passing close to a high exposure of the schist it vibrated between $50^{\circ} \mathrm{W}$. and $50^{\circ} \mathrm{E}$. of north as roughly estimated ' (Report, p. 294). The above variation is irregular, in defect, and also indicates local disturbance.
CVII. On the same day, observed at noon on Lake Bonnet or Cap Lakie. Lat. $50^{\circ} 20^{\prime} 56^{\prime \prime}$.

This was a day of incessant unloading and reloading the canoe at different short portages, and no other magnetic observations were taken. Encamped at 9.30 р.м.
CVIII. June 25.-Left camp at 3.45 a.m. and reached Fort Alexander, about $1 \frac{3}{4}$ mile from the mouth of the River Winnipeg.

Again, September 20, 1844:--

The first reading, on June 25, which I have rejected for its irregularity, gives, taken singly, $15^{\circ} 31^{\prime} \cdot 2$, and if we include it, the mean of the set becomes $13^{\circ} 29^{\prime}$; in either case it is irregular, but I see nothing to justify the rejection of the observation.

Horizontal force in absolute measure, September 19, 1844 :-

	Corrected T	m	x	ϕ	w.
Magnet 30	$\stackrel{\text { s }}{4}+4898$	$0 \cdot 3962$	2.7019	$14 \cdot 229$	(1.5)
:, 31	4.7943	0.3515	2.7044	14-237	(1.5)
, 17	5.0090	$0 \cdot 6414$	2-6888	$14 \cdot 156$	(1.5)
			$2 \cdot 6984$	$14 \cdot 207$	$(0 \cdot 45)$
Mean				14.098	(0\%9)

SECTION III.

FORT ALEXANDER TO YORK FACTORY ON HUDSON'S BAY.

Aburt 695 geographical miles.
CIX. June 26, 1843.-Left Fort Alexander, Observed at noon. Lat. $50^{\circ} 38^{\prime} 33^{\prime \prime}$.
CX. Observed at the encampment on Lake Wimnipeg ($=$ muddy water) a little way round the point. Lat. by account, $50^{\circ} 35^{\prime}$; long. $96^{\circ} 35^{\prime} 38^{\prime \prime}$.

Variation, 6.6 p.m.		41.0 E .
Dip by the Fox circle, 7 f.m.	. 78	34.4
Total Force	Relativ	
Fox A	$1 \cdot 8667$	14.

Out of six customary deflections of the Fox needle, one was, on this occasion, omitted, in consequence of the failure of daylight at 8 p.m.
CXI. June 27.-On Lake Winnipeg, very near the last station. By observation at noon. Lat. $50^{\circ} 33^{\prime} 25^{\prime \prime}$; long. $96^{\circ} 36^{\prime}$.

Dip by the Fox circle $70^{\circ} 5^{\prime \cdot 1}$
This was a day of detention. "The wind blew steadily, and raised a sea which the canoe could not face.' It is to be regretted that the rariation and force were not observed, as the dip is anomalous. It would seem that the weather prevented observation.
CXII. June 28.-Left camp at 3.45 A.m. Reached the mouth of the Red River about 8 A.m. Observed at noon, about ten miles below the 'Stone Fort.' Lat. $50^{\circ} 16^{\prime} 20^{\prime \prime}$.

Reached Lower Fort Garry, or 'The Stone Fort,' between 4 and 5 p.m., where I had the pleasure of finding the Governor of the Hudson`s Bay Company, Sir George Simpson.
CXIII. June 29.-Accompanied Sir George Simpson to Upper Fort Garry, or Fort Assiniboia, now Wimipeg City, a distance of twenty miles by land from the Lower Fort, and near the junction of the Assiniboine and Red rivers, sometimes called the Forks. Here I remained until July 4; detained by necessary repairs to the dip circle, and other requirements.

Upper Fort Garry.

Fort Garry is laid down in Arrowsmith's map of British North America, dated April 25, 1844, in longitude $97^{\circ} 6^{\prime}$, as nearly as the small scale of the map admits of measurement. Upon grounds which I cannot at present remember, or trace, I assigned $97^{\circ} 3^{\prime}$. It appears, however, to be $12^{\prime} \cdot 6$ more to the westward. I am indebted to Major Sanderson, R.E., of the British American Bomdary Commission of 1872-6, for the information that the true longitude of the Fort is $97^{\circ} 15^{\prime} 36^{\prime \prime}$, or $6^{\mathrm{h}} 29^{\mathrm{m}} 24^{\mathrm{s}} \mathrm{W}$., made out as follows. The longitude of Pembina was determined by that Commission to be $97^{\circ} 13^{\prime} 51^{\prime} \cdot 5$, whence that of the 'First Principal Meridian ' of the Dominion Govermment surveys of Manitoba and the North-West Territory is $97^{\circ} 27^{\prime} 9^{\prime \prime}$. Fort Garry is, by the surveys, 8.75 statute miles east of this 'First Principal Meridian,' equivalent to $11^{\prime} 33^{\prime \prime}$ of longitude. The adoption of this datum has rendered it necessary to correct the longitudes on Lake Wimipeg.

Horizontal force in absolute measure by deflection and vibra-tion:-

Mean allowing to the respective results the weights of 2.5 and 0.3 is 14.056 .
CXIV. July 4.-Left the Fort and encamped about six miles from the mouth of Red River. Lat. by Polaris $50^{\circ} 18^{\prime} 12^{\prime \prime}$; long. $96^{\circ} 52^{\prime}$.

CXV. July 5.-Left camp 2.30 A.m., reached the mouth of the Red River 4.30. Observed at noon on the west side of the lake from the lake horizon. Lat. $50^{\circ} 43^{\prime} 51^{\prime \prime}$.
CXVI. Encamped on the same side, on a sandy beach covered with fragments of limestone, with a swamp in rear. The musquitoes here were almost intolerable. It was necessary to fill the tent with acrid smoke from damp weeds to obtain a moment's respite. Lat. by account $51^{\circ} 36^{\prime}$; long. $96^{\circ} 56^{\prime}$. The south point of Ox Head bore E.N.E. from this camp.

July 6.-After passing Big Grindstone Point I coasted the east
side of the lake, on which side all my observations were made on the return voyage in 1844. I take the stations in their order from Fort Alexander northwards.
CXVII. Landed at a point about eleren miles S.S.E. from the south end of ' Ox Island,' which is probably the same as ' Big Island ' on Dr. Bell's map of 1878. Franklin marks 'Ox Head' on the mainland, Dr. Bell applies the term to the point of this island. By observation at noon. Lat. $51^{\circ} 4^{\prime} 0^{\prime \prime}$; long. $96^{\circ} 26^{\prime}$.

$$
\text { Dip, А.м. } 79^{\circ} 31^{\prime} 5
$$

Horizontal force in absolute measure by vibration only :-

This force is excessive.
September 18, 1844.
CXVIII. Observed at an island, probably the one cut off by Loon's Straight in Dr. Bell's map. Lat. by Polaris the previous evening $51^{\circ} 34^{\prime} 0^{\prime \prime}$; long. $96^{\circ} 43^{\prime}$.

$$
\begin{aligned}
& \text { Variation by collimator, } 9.36 \text { 九.м. } \\
& \text { Dip } \\
& \text { Dis. } \\
& \hline
\end{aligned}
$$

Horizontal force in absolute measure by vibration only :-

To'al Force		Corrected T	m	x	ϕ	\%.
By Magnet	30	$4 \cdot 4662$	0:3970	2.7254	$14 \cdot 415$	(1.0)
",	31	4.7866	$0 \cdot 3512$	2.7158	$14 \cdot 365$	(1.0)
"	17	$4 \% 768$	$0 \cdot 6418$	$2 \cdot 7221$	14:398	(1.0)
				$\because 7211$	14.393	(0.3)

Here, too, the force is excessive.
September 17, 1844.
CXIX. July 6, 1843 (resumed).-Observed at the camp, nearly opposite the Bull's Head. A straight, about three miles wide and twelve miles long, here divides Lake Wimipeg into a northern and a southern basin, and is the point of junction of the limestone of the west side with the eruptive formations, consisting of Syenitic gneiss, granite, and greenstone on the east side. Here, as may be expected, are evidences of considerable local disturbance in the magnetic elements, which also appear at the next two stations. Lat. by Polaris $51^{\circ} 36^{\prime} 42^{\prime \prime}$; long. $96^{\circ} 53^{\prime}$.

Franklin found the variation in $182514^{\circ} 46^{\prime} \mathrm{E}$. within a mile or two of this station. There is a puzzling discrepancy between my dip and the dip deducible from the angles of deflection of Fox's needle, which is only $78^{\circ} 11^{\prime}$. Such discordance between results obtained within a few yards of each other is not without precedent, but the case is extreme, and further observations in the same locality are desirable. ${ }^{1}$
CXX. Observed at noon. Lat. $51^{\circ} 41^{\prime} 55^{\prime \prime}$.

September 16, 184.
CXXI. In the forenoon of the same day observed at a spot $3 \frac{1}{2}$ miles N.W. from the last, nearly opposite the Tête du Chien. Lat. by account, $51^{\circ} 44^{\prime} 5^{\prime}$; long. $97^{\circ} 2^{\prime}$. Formation, gneiss.

Horizontal force in absolute measure by vibrations only :-

Corrected T			m	x	ϕ	\%.
By. Magnet		${ }^{\text {s }} 4.44 .97$	$0 \cdot 3971$	$2 \cdot 7504$	15:32	(1.0)
,	31	4.7457	$0 \cdot 3512$	$2 \cdot 7630$	15.379	(1.0)
"	17	4:9326	$0 \cdot 6418$	2.7610	15924	(1.0)
				$2 \cdot 7634$	15:382	(0*3)

The force indicates great disturbance.
September 16, 1884.

Abstract

${ }^{1}$ Each observation for dip is full, complete, and consistent with itself. There are no grounds for preferring one to the other. The instruments were generally set up some twenty or thirty yards apart; there is no record of the actual distance between them, but I can only conclude that the Fox circle, which is the one in doubt, was under some strong influence, exerted close at hand.

The details are:-

Dip from deflections with	$2 \cdot 5$ grains	.	.	$i 8$	$10 \cdot 2$	
$"$,	$3 \cdot 0$	$"$.	.	78	$12 \cdot 9$
$"$	$"$	3.5	$"$.	.	78
		$5 \cdot 5$				
$"$	$"$	$4 \cdot 0$	$"$.	.	78

At the next station agreement is re-cstablished. See, for a similar excess of force, Little Rock Portage on August 31, Station CXCV, and Cape Gargantua, Station LII.
CXXII. July 7, 1843.-Opposite the Dog's Head. Lat. by account, $51^{\circ} 40^{\prime}$; long. $96^{\circ} 56^{\prime}$.

$$
\begin{aligned}
& \text { Variation by compass, } 7.36 \text { a.M. . . } 2137 \cdot 1 \mathrm{E} \text {. } \\
& \text { „ " } 7.45 \text {. . } 2139.5
\end{aligned}
$$

This is confirmatory evidence of much local disturbance in this neighbourhood. Each result is from the mean of six observed azimuths.
CXXIII. Quitting the last station at 7.50 a.m. I observed at noon, lat. $51^{\circ} 45^{\prime} 8^{\prime \prime}$, and was forced by the wind to land about half an hour later upon a small island, without a name, where we were detained until 5 p.m.
CXXIV. Nameless Island, E. of Bear Island. Lat. by account, $51^{\circ} 46^{\prime}$; long. $97^{\circ} 0^{\prime}$.

Dip by Gambey 1, 1 P.M.		.	-	$\stackrel{\circ}{79}$	$28 \cdot 3$
, Fox A	79	$28 \cdot 8$
," \% C	. .	-	- -	79	$32 \cdot 2$
Total Force		Relative	Absolute		w.
By Fox A	-	1.9020	14.396		(6.0)
, C	-	$1 \cdot 9080$	$14 \cdot 440$		$(4 \cdot 0)$
Lloyd B .	- .	1.9052	$14 \cdot 420$		(2.5)
		1.9045	14.414		(1.25)

CXXV. July 7 (continued).-On quitting the island there is a wide traverse across a bay (entered by Blood River), which, being made, I encamped near Rabbit Point. Lat. by Polaris, $51^{\circ} 52^{\prime} 37^{\prime \prime}$.
CXXVI. July 8.-Left camp 3.15 A.m. Landed for breakfast and observation, 7.30 A.m. Lat. by account, $52^{\circ} 6^{\prime} 5$; long. $97^{\circ} 8^{\prime}$.

$$
\text { Variation, } 8.5 \text { ム.m } 15^{\circ} 38^{\prime} 6 \mathrm{E} \text {. }
$$

CXXVII. Same day.-Observed at noon. Lat. $52^{\circ} 12^{\prime} 18^{\prime \prime}$.
CXXVIII. Observed at a station near Berens River, intermediate between two stations of July 8. Lat. by observation at noon, $52^{\circ} 20^{\prime} 56^{\prime \prime}$; long. $97^{\circ} 10^{\prime}$.

Variation by collimator, 3.48 ғ.м. . . $16 \quad 546$ E.
Dip by Gambey $80 \quad 24 \cdot 4$

Horizontal force in absolute measure by vibration only :-

CXXIX. July 8, 1843 (resumed).-Observed at the place of encampment near the present Wesleyan Mission Station at Berens River. Lat. by Polaris, $52^{\circ} 22^{\prime} 38^{\prime \prime}$; long. $97^{\circ} 12^{\prime}$.

I give the first for confirmation, but as it is by one sight only, and the second by seven, I take as the mean $14^{\circ} 19^{\prime} \cdot 8$, which is so irregular as to indicate local disturbance.

Total Force		Relative	Absolute	W.
By Fox A	.	1.8606	$14 \cdot 150$	(6.0)

$$
\begin{aligned}
& \text { Not observed for want of } \\
& \text { daylight, Lloyd . . nil }
\end{aligned}
$$

CXXX. July 9.-Observed about five miles W.N.W. from last night's camp, probably on the southern Mossy Point. Lat. by account, $52^{\circ} 25^{\prime}$; long. $97^{\circ} 18^{\prime}$.

$$
\text { Variation, } 8.31 \text { A.M. } 19^{\circ} 22^{\prime} \cdot 7 \mathrm{E} .
$$

I find an allusion to this day in one of my letters, dated July 24 , 1843, which also explains my slow progress at this time:-'Lake Winnipeg is treacherous; so shallow that a sea rises in a moment, and full of wide bays, which are so many traps, at which one is constantly detained. The lake is indeed so shallow, that we got aground on Sunday morning, July 9 , in the middle of a violent thunderstorm, and were kept all day on a miserable naked sandbar. My Iroquois Butte Laurent had a character at one time for being an adventurous fellow, but he is now rather old for his work, and was always declaring it blew too hard to go on.'

Dr. R. Bell made, at my request, a number of soundings in 1880, finding a general depth of 40 or 50 feet-nowhere more than $16 \frac{1}{2}$ fathoms, or under 100 feet.
CXXXI. July 10.-Left camp at 4.10 a.m. Observed at the breakfast halt, which must have been near Leaf River. Lat. by observation at noon, $52^{\circ} 31^{\prime} 37^{\prime \prime}$; long. $97^{\circ} 18^{\prime}$.

Variation, 8.3 A.M. $19^{\circ} 12^{\prime} \cdot 2$			
Dip by Gambey No. 1 gave		.	$\stackrel{\circ}{80} \quad \stackrel{1}{3 \cdot 7}$
"	2.3 P.м.	.	$80 \quad 7 \cdot 2$
, Fox A gave	. .	- .	$\begin{array}{ll}80 & 8 \cdot 2\end{array}$
Total Force	Relative	Absolute	W.
Fox A (1)	$1 \cdot 8656$	$14 \cdot 120$	(6.0)
", (2)	. 1.8652	$14 \cdot 117$	(6.0)
Fox C	- 1.8721	$14 \cdot 170$	$(4 \cdot 0)$
Llogd A	. 1.8584	14065	(2.5)
" B	1.8694	$14 \cdot 149$	(2.5)
	$\overline{1 \cdot 8646}$	$14 \cdot 113$	(2•1)

This was a day of detention.
CXXXII. Observed near Poplar Point on the return voyage. Lat. $52^{\circ} 56^{\prime} 12^{\prime \prime}$.
CXXXIII. July 11.-Left at 6 A.m. Observed at noon. Lat. $52^{\circ} 57^{\prime} 50^{\prime \prime}$. No other observations were made.

I am informed by Dr. Bell that the Dominion Lands Department gives the variation a little south of the outlet of Poplar River in 1877, that is to say, two or three miles north of this station, as $15^{\circ} 20^{\prime} \mathrm{E}$. He observed $15^{\circ} 15^{\prime}$ in 1879 in the same neighbourhood.

September 13, 1844.
July 12.-Left at 3 A.m. Chronometer No. $\frac{2}{503}$, carried by my assistant, Corporal W. Henry, was reported stopped at 7 A.m. I could obtain no explanation at the time. The watch was left at Norway House for transmission to England, and upon examination the mainspring was found to be broken, evidently the result of some accident not made known to me. The event was the more unfortunate, as if it had run but ten hours further, its mean rate from Fort Garry would have been directly ascertained.

I arrived this evening at Norway House, but there is another station visited later to be first given.
CXXXIV. August 12.-On the site of Old Norway House, on Mossy Point. Position determined by Franklin in 1819. Lat. $53^{\circ} 41^{\prime} 38^{\prime \prime}$; long. $98^{\circ} 1^{\prime} 24^{\prime \prime}$.

Dip by Gambey 1, p.m. " Fox, needle C, gave		.	$80^{\circ} \quad 45 \cdot 4$
		-	$80 \quad 49 \cdot 4$
Total Force	Relative	Absolute	W.
Fox C	$1 \cdot 8642$	$14 \cdot 110$	(4.0)
Lloyd A	1.875	14\%210	(2.5)
, B	1.8771	14.207	(2.5)
	. 8715	4•162	

CXXXV. Dr. Bell observed the variation about one mile north of Warren's Landing, on this Point, in $1878,16^{\circ} 45^{\prime}$ E.

Norway House.
CXXXVI. I risited this station twice in 1843, and again in 1844. The observations are here collected. Lat. by observation, July $14,53^{\circ} 59^{\prime} 38^{\prime \prime}$; August $8,53^{\circ} 59^{\prime} 28^{\prime \prime}$. Long. as determined by Mr. Taylor, formerly astronomer to the Hudson's Bay Company, $98^{\circ} 7^{\prime}$, or $6^{\mathrm{h}} 32^{\mathrm{m}} 28^{\text {s }}$ west. It is very nearly, if not actually, upon the site of a former Jack House, which is laid down by Franklin about $1^{\prime} 20^{\prime \prime}$ west of Old Norway House, of which he found the long. to be $98^{\circ} 1^{\prime} 24^{\prime \prime}$; therefore his position of the present Norway House may be taken to be $98^{\circ} 2^{\prime} 40^{\prime \prime}$.

The first two observations were made with the compass card upon the pivot used all the way from Canada, which was tipped with some hard metal termed 'natural alloy,' the nature of which

[^44]I do not know. The compass was extremely sluggish, and the card only moved $2^{\circ} 40^{\prime}$ for a motion in azimuth of the sun of $5^{\circ} 54^{\prime}$.

The card was then removed, and a hard steel point substituted, with which the other three sets were taken. The card now moved $6^{\circ} 3^{\prime}$ for the same movement through $5^{\circ} 15^{\prime}$. There are no signs of disturbance at Toronto at this time (Gött., 13^{h} to 15^{h}).

I take for the station, $15^{\circ} 35^{\prime}$.

The mean by a great number of observations with Fox's needles is $81^{\circ} 11^{\prime} \cdot 1$.

Total Force.

Norway House being a station of critical importance, and the standard of reference for all the more northern stations, I give in full detail the observations upon which its relation to Toronto is established. The total force at Toronto on the relative scale in use is, as already explained, p. 56, 1.8360. The following were assumed by Sabine to be the mean angles of deflection of Fox's needle A at Toronto in 1843, with the weights specified.

And since the sines of the angles of deflection are as the weights, if these angles are truly in accord, their natural sines divided by the weight should be constant. It will be seen by the figures in the last two columns below that the differences are small. The weight 2.0 grains was only used at four stations, for the other four weights the mean difference is 0.00023 , or about 0.0025 on the actual scale of force.

Employing then these angles as the standard of comparison, we obtain from the recorded angles given by the same weights at Norway House in 1843 the following results :-

Table XV.
(Needee A.)

Date	Weights employed					Mean, as observed	Temp.	Reduced to 46°	W.
	$2 \cdot 0$	$2 \cdot 5$	3.0	$3 \cdot 5$	$4 \cdot 0 \mathrm{gr}$.				
$\begin{array}{r} 1843 \\ \text { July } 13 \end{array}$	-	1.8585	$1 \cdot 8817$	1:8482	$1 \cdot 8743$	$1 \cdot 8657$	$69 \cdot 8$	1.8728	(6.0)
August 8 .	$1 \cdot 8749$	$1 \cdot 8576$	$1 \cdot 8549$	1.8479	$1 \cdot 8610$	$1 \cdot 8592$	$79 \cdot 0$	1.8690	(6.0)
,"bis	$1 \cdot 8543$	$1 \cdot 8604$	1.8789	1.8471	1-8612	$1 \cdot 8604$	81.8	$1 \cdot 8714$	(6.0)
" 9 .	1.8889	$1 \cdot 8455$	$1 \cdot 8458$	1.8379	$1 \cdot 8434$	1.8523	$83 \cdot 8$	1.8635	(6.0)
Means	$1 \cdot 8727$	1.8555	1.8653	$1 \cdot 8452$	$1 \cdot 8600$	1.8594	78.6	1.8692	(2.4)

The same needle (A) was observed again at Norway House in September 1844, and subsequently at Toronto. It was by this time somewhat impaired in condition, but the results are in fair accordance with the above.

Fox's needle C was also observed on August 8, but the axles were rusty. Only two angles gave true results, mean $1 \cdot 8737$, or $14 \cdot 181$.

Observations of 1844 , reduced to uniform temperature :--

Weight	Needie A	Neeale C
1.5 grain	-	1.8490
$2 \cdot 0$	-	1.8719
2.5	1.8615	1.8578
$3 \cdot 0$ "	$1 \cdot 8514$	$1 \cdot 8547$
35	1.8502	1.8785
$4 \cdot 0$	$1 \cdot 8418$	-
45	1.8435	-
As observed	$1 \cdot 8497$	$1 \cdot 6624$
As reduced	1.8554	18669

The mean of the whole, allowing weight 5 to each result of 1844 , is $1 \cdot 8669=14 \cdot 129 \mathrm{in}$ absolute measure.

This value may be compared with the value deduced from observations of the absolute horizontal force at the same stations.

At Toronto the values established, and forming the common basis of all the reductions are (ante, p. 56) :

[^45]At Norway House we have, by deflection and vibration :-

These absolute values are in the ratio 1.0194 ; the direct comparison gives the ratio $1 \cdot 0166$, a satisfactory agreement.

Combining then the mean results by these two independent and dissimilar methods of observation, I obtain for the total force, Norway House, in relative measure, $1 \cdot 8677$, in absolute measure $14 \cdot 136$, being somewhat less than the values formerly assigned, which were respectively $1 \cdot 873$ and $14 \cdot 18$. The observations reduced to Norway House as a base have been corrected accordingly.

I left Norway House on Friday evening, July 14, but made little progress. The guide took a wrong chamnel, and got among some beaver dams, causing a considerable loss of time. The stations which follow are arranged in gengraphical order, not in order of date.

CXXXYII. Observed at noon, on the day of my return to Norway House, on East River. Lat. $54^{\circ} 7^{\prime} 49^{\prime \prime}$ (August 7, 1843).
CXXXVIII. July 15.-Left my camp on East or Sea River at 3.15 А.м. A portage, 5.35 to 6.15 . Halt, 7.5 to 8.10 . Blackwater River, 8.34. Hairy Lake, 11.5 to 11.55. Sea River Portage, 4.0 to 4.10. Carpenter's Lake at 5 p.m.

Observed on Carpenter's Lake, an expanse beyond Sea River Falls. Lat. by account, $54^{\circ} 14^{\prime}$; long. $97^{\circ} 40^{\prime}$.

$$
\text { Variation, } 7.20 \text { A.M. } 21^{\circ} 26^{\prime} 0
$$

This is a marked case of local disturbance, and the station was omitted by Sabine. It is probably explained by the change of geological formation. By Dr. Bell's map of 1878 we are here close upon the margin of a narrow irregular basin of Huronian schists, which extends from longitude $98^{\circ} 10^{\prime}$ to $94^{\circ} 10^{\prime}$. The line of water commumication this day, the 15th, again on August 5, also from r.m. July 17 to a.m. July 20, and from August 2 to 4,
lies within this basin. July 17 a.m. and August 4 p.m. it lies a little to the south of it. The boundary is crossed four times between Norway House and York Factory, a circumstance which goes far to explain the apparent anomalies of the observations for variation on this part of the route, which were equally perplexing to Sir John Franklin.
CXXXIX. Observed at Blackuater Creek. Lat. by Polaris $54^{\circ} 18^{\prime} 8$.

August 6, 1843 .
CXL. On the same day observed on Hairy Lake at the mouth of the River Echiamamis. Lat. by account, $54^{\circ} 20^{\prime}$; long. $97^{\circ} 28^{\prime}$.

August 6 .
CXLI. July 15 (resumed).-Observed at the encampment on one of the chain of small lakelets west of the Painted Stone Portage. Lat. by account, $54^{\circ} 23^{\prime}$; long. $97^{\circ} 4^{\prime}$.

Variation, 8.2 p.m. $35^{\circ} 11^{\prime} \cdot 2$ E.
I can only leave this result as I find it, for verification by future travellers, like the corresponding case, Station LXXI. There is nothing in the original entry to warrant the rejection of the observation. It was omitted by Sabine.
CXLII. July 16.-Observed at another point near the source of the Echiamamis, two or three miles (40 min . in time) from the height of land. Lat. by account, $54^{\circ} 21^{\prime}$; long. $97^{\circ} 2^{\prime}$.

$$
\text { Variation, } 7.45 \text { А..M. } 18^{\circ} 39^{\prime} 7 \text { E. }
$$

The day clonded over, but two detached sights were noted, one before and one after the above set.

[^46]CXLIII. I encamped at the Painted Stone Portage. Latitude by altitudes of Polaris $54^{\circ} 22^{\prime} \cdot 3 ;^{1}$ long. $96^{\circ} 59$ (August 5, 1843). This erening was marked by a magnificent display of aurora, the most brilliant that I ever witnessed, and the more remarkable, as it must have been very near the earth's surface, as it appeared to be. It was not observed at any of the nearest Hudson Bay posts, or by the travellers in the brigade of canoes then on its way north, which was only a few marches off, or at any station in lower latitudes. ${ }^{2}$ I transcribe therefore my account of it given in letters addressed to General Sabine and Lieut. Younghusband a few days afterwards:-
. . . A magnificent aurora from 9 p.m. to near midnight, more brilliantly coloured and more rapid in its movements than anything I have hitherto seen. It began by a small arc, which rapidly extended and became almost fearfully bright as it reached the zenith. It there broke up, wheeling and dancing over the sky in a wonderful manner. Presently appeared over the trees another arch of a bright rose colour, and joined it. There was an appearance of depth about it, not as if it were a passing flash, but as if solid, and every fibre in the most rapid and incessant motion. Heary curtains of light, variously tinted, seemed at times to be let suddenly down, and as suddenly raised or withdrawn. It was such a spectacle as can never be forgotten.

August 5 was not noticed as a day of magnetical disturbance at any of the stations, but disturbance was recorded on the 3rd, 4th, 7 th, and 8 th of that month. The nearness of this aurora to the earth, which may be inferred from its not having been seen at other places, is paralleled by another example on September 9 , when a display of the first brilliancy was seen at the Methy Portage. I was at Lac à la Crosse, about 100 miles to the south, engaged in observations until late at night, and can affirm that no aurora was visible there, nor is there any display recorded elsewhere for this date.
CXLIV. Observed at the White Fall Portage, which appears to be the one called Robinson's Portage by Dr. Bell. Lat. of south end $54^{\circ} 23^{\prime} 20^{\prime \prime}$ F.; long. $96^{\circ} 31^{\prime} \mathrm{F}$. Dr. Bell places it about 6^{\prime} more to the west.

[^47]| Total Force | | | Relative
 Absolute | ω. | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Fox A | . | . | 1.8790 | $1+2.21$ | $(6 \cdot 0)$ |
| Lloyd B | \cdot | \cdot | 1.8694 | $\underline{1+149}$ | (2.0) |

August 5.
CXLV. Observed at the upper portage of Hills Gutes, leading from Windy Lake into Holey, or Oxford Lake. Lat. $54^{\circ} 42^{\prime}$; long. $96^{\circ} 10^{\prime}$.

Dip by Gambey 1.30 r.m.				$8{ }^{\circ} \mathrm{L} \quad 57 \cdot 0$
		.		$8153 \cdot 5$
Total Force		Relative	Absolute	w.
FoxA.		1.8789	14.221	(6.0)
		1.8741	14•184	(2.0)
Lloyd A	- . .	1.8752	14•193	(2.0)
," B	. .	1.8694	$14 \cdot 116$	(2.0)
		1.8750	14•191	

August 4.
CXLVI. On the same day observed at noon about half a mile below the 'Crooked Spont,' between the same two lakes. Lat. $54^{\circ} 40^{\prime} 51^{\prime \prime}$.

August 4.
CXLVII. July 17.-- Left camp at 3.10 a.m. Landed for breakfast 7.15 to 8.2. Entered the first Rapid 9.10 and the Crooked Spout at 9.20. Reached the Lower Portage at 10.50 a.m. and observed there at noon. Lat. $54^{\circ} 43^{\prime} 55^{\prime \prime}$.
CXLVIII. Observed near the west end of Holey, or Oxford Lake. Lat. by account, $54^{\circ} 46^{\prime} \cdot 8$; long. $96^{\circ} 9^{\prime}$.

Variation, 7.59 А.м. $12^{\circ} 53^{\prime} 6$.
August 4.
CXLIX. July 18.-Observed on Holey, or Oxford Lake, near the east end. Lat. by account, $54^{\circ} 54^{\prime} 3$; long. $95^{\circ} 40^{\prime}$.

$$
\text { Variation, } 8.3 \text { А.м. } 16^{\circ} 45^{\prime} 5 \text { E. }
$$

CL. On the same day, reached Oxford House, about 9.45 a.m., and proceeded after a short delay; but on my return from York Factory, August 3, I made observations as follows:-

The Geological Survey map of 1878 places this Fort in $95^{\circ} 42^{\prime}$, which appears to be too far to the west.

Variation, 5.10 p.m. Dip, 5.30 p.m., Gambey			-	$82 \quad 38 \cdot 8$
"	Fox A	-	. .	$82 \quad 43 \cdot 4$
Total Force		Relatise	Absolute	W.
Fox A .		1.8820	14.244	(2.0)
Lloyd A	.	1.8746	$14 \cdot 188$	(6.0)
	. \cdot	1.8764	14.202	(2.0)
		1.8764	$14 \cdot 192$	(1.0)

All the elements are disturbed at this station.
CLI. Observed at noon on a rocky islet near the Knife Portage. Lat. $54^{\circ} 53^{\prime} 4^{\prime \prime}$.

August 3.
CLII. July 18 (resumed).-Observed at noon at the Rapid on Trout Ricer. Lat. $54^{\circ} 52^{\prime} 59^{\prime \prime}$. Franklin observed the longitude at Trout Portage, a little to the east, $95^{\circ} 21^{\prime} 9^{\prime \prime}$.
CLIII. Observed on the north side of Knee Lake. Lat. by account, $54^{\circ} 51^{\prime}$; long. $95^{\circ} 11^{\prime}$.

$$
\begin{aligned}
& \text { Variation, } 7.54 \text { д.м. . . . }{ }_{13} 3 \text { 54.8 } \\
& \text { „ } 8.19 \quad \text {, . . } 14 \quad 37 \cdot 6 \quad 14^{\circ} 16^{\prime} 2
\end{aligned}
$$

This station is about three miles south from Franklin's 'Magnetic Island ' (I. p. 36). Observed lat. $54^{\circ} 59^{\prime}$. Dr. Bell has a ' Magnetite Island ' in lat. $54^{\circ} 54^{\prime}$, which must be a different one.
CLIV. August 3 (resumed).-Observed at noon at the 'Second Portage ' (F) in Jack River, at the west end. It is probably one of Dr. Bell's ‘Drum Portages.' Lat. $55^{\circ} 13^{\prime} 38^{\prime \prime}$.

August 2.
CLV. July 19.-This being one of the Göttingen Term-days, devoted to continnous magnetic observation for 24^{h}, to which much importance was at that time attached, I decided to halt and observe it. The spot selected was the Long Portage on Jack River (450 yards long), between the Drum Portages and the 'Yellow Mud' Portage of Dr. Bell's map. The latter I identify with Franklin's Lower Portage, Jack River. Lat. by observation, 20th, $55^{\circ} 14^{\prime} 1^{\prime \prime}$; long. by observation, $94^{\circ} 21^{\prime} 58^{\prime \prime} \mathrm{F}$. Dr. Bell makes it $94^{\circ} 33^{\prime}$.

Franklin found in 'September $1819,11^{\circ} 10^{\prime} \cdot 4$, and at the Upper l'ortage, $10^{\circ} 28^{\prime} 5$.

The Term observations were interrupted by rain from $14^{\mathrm{h}} 40^{\mathrm{m}}$ to $17^{\mathrm{h}} 10^{\mathrm{m}}$ Gött. ($7^{\mathrm{h}} 43^{\mathrm{m}}$ to $9^{\mathrm{h}} 13^{\mathrm{m}}$ м.т.). A rather bright aurora was visible for a short time at $19^{\mathrm{h}} 20^{\mathrm{m}}$ Gött. ; disturbance of moderate amount characterised the whole day, and one very marked movement of declination lasted from 1^{h} to 8^{h} Gött., of the 20 th (6 А.м. to 1 р.м., м.т.) ; the easterly declination in that time increased 110 scale divisions, equivalent to $1^{\circ} 50^{\prime}$, a movement which illustrates the difficulty of ascertaining the true mean declination, or variation, in these latitudes, the time of day being that in which a large proportion of my observations fell.

I left the Long Portage about 3.45 p.an. on the 20th, and encamped at 8 P.m.
CLVI. Observed at noon at the Creek Portage (F.), a little to the east of the Mossy Portage of Dr. Bell. Lat. $55^{\circ} 27^{\prime} 16^{\prime \prime}$.

August 1.

CLVII. On the same day observed at the Deril's IIanding Place, the second portage in Hill River, descending. Lat. by account, $55^{\circ} 24^{\prime}$; long. 94°.

CLVIII. July 21.-Observed at Morgan's Rocks Portage. Lat. $55^{\circ} 29^{\prime}$; long. $93^{\circ} 53^{\prime}$.

Variation, 7.17 s..x. $11^{\circ} 11^{\prime} \mathrm{E}$.
CLIX.-On the same day observed again at the White Mud Portage. Lat. by map, $55^{\circ} 33^{\prime}$ F.; long. $93^{\circ} 44^{\prime} \cdot 6$.

I passed this spot again on July 31, and made other observations.

Dr. Bell observed variation in 1878 a little to the eastward of this station (' Hill River, about twenty miles above its junction with Fox River '), $9^{\circ} 45^{\prime}$ E., showing a secular change of about -2^{\prime} per annum.
CLX. July 22.-Left camp at 2.50 a.m. Observed at noon on Steel River. Lat. $56^{\circ} 11^{\prime} 14^{\prime \prime}$.
CLXI. On the same day landed at about 3 p.m. at the junction of the Shamatara with the Steel, or Hayes, or Hill River (this stream is called by these three different names in the last hundred miles of its course). I landed also at the same spot on my return, July 28. Lat. by account, $56^{\circ} 21^{\prime}$; long. $93^{\circ} 0^{\prime}$.

$$
\begin{gathered}
\text { Variation, July } 22,6.15 \text { r.... } \\
\quad \# \quad, \quad . \quad . \quad . \quad 10 \\
\hline
\end{gathered}
$$

These observations are both apparently good, and of equal weight.

Dip, July 28, 4 P.m.	. .	-	$8{ }^{\circ}$	${ }_{36}{ }^{\prime}$
" „22, by Fox	. \cdot	.	83	$41 \cdot 6$
, 28	- .	. \cdot	83	$30 \cdot 2$
Total Force	Relative	Absolute		w.
July 22, Fox A	1-8648	$14 \cdot 114$		(6.0)
28	1.8723	14.171		(6.0)
22, Lloyd B	1.8637	$14 \cdot 106$		(2.5)
28 ,	$1 \cdot 8586$	14.089		(2.0)
	$\overline{18666}$	$14 \cdot 130$		(1.65)

CLXII. July 23.-I reached York Factory, on Hudson's Bay, on the forenoon of this day, and remained until the 27 th. Lat. by observation at noon, July $24,56^{\circ} 59^{\prime} 56^{\prime \prime}$.

This differs from Franklin's determination by $-7^{\prime \prime}$ only, and unless the establishment has since been moved, it is laid down on the map of the Geological Survey about 2^{\prime} too far north. Long. accepted from Raper, $92^{\circ} 26^{\prime}$.

Lieut. R. B. Blakiston, R.A., who was attached to the Assiniboine and Saskatchewan Exploring Expedition under Captain John Palliser in 1857, as magnetical observer, was sent to join the expedition by way of York Factory, with the object of verifying my observations, more especially those of the force (see below) to which a particular interest attached. He found the declination in August, 1857, $7^{\circ} 37^{\prime}$ E., making it probable that this element attained its easterly extreme at York Factory about the year 1843-4, which was the epoch of a change in another element (the dip) at Toronto.

July 25 was a day of magnetic disturbance generally, especially in the southern hemisphere, and it extended into the 26 th. Although no special observations were made there, it is plainly traceable in the ordinary readings at Toronto on that day ; and I remarked July 26 as a day of disturbance at the time, from the irregular readings of the declinometer. Sabine appears to have rejected the variations observed on that day. Looking, however, to the importance of balancing observations a.m. by observations p.м., I think it better to allow them to stand ; making the mean variation $9^{\circ} 0^{\prime} \cdot 6 \mathrm{E}$. , instead of $9^{\circ} 25^{\prime}$ E., as previously published.

Having occasion to alter the weight in Lloyd's Static Needle

[^48]No. A at this station, I took the opportunity of observing the dip with it without reversing the poles, giving at 6 p.м. $83^{\circ} 43^{\prime} 7$. Also on July 25 the dip deducible from the angles of deflection with Fox needle A was $83^{\circ} 55^{\circ} \cdot 9$. These results are not of equal value with the above, and I make no use of them.

Dr. Jolm Rae observed the dip at York Factory at intervals of three or four days from November 5, 1845, to May 16, 1846.' The mean of these observations, fifty-two in number, is $83^{\circ} 42^{\prime} \cdot 57$, corresponding to February 9, 1846. On September 18, 1847, he found it $83^{\circ} 47^{\prime} \cdot 0$. The greatest dip observed was $83^{\circ} 54^{\prime} \cdot 2$, on December 3, 1845 ; and the least, $83^{\circ} 35^{\prime} 5$, on April 25, 1846. The mean deriation of any one observation from the mean for that month being $\pm 2^{\prime} \cdot 5$. The rate of secular change shown is $-1^{\prime} \cdot 8$ per amnum.

York Factory, as already remarked, was visited by Lieut. R. B. Blakiston, R.A., in August 1857, when the dip was found to be $83^{\circ} 53^{\prime}$, whence it would appear to have decreased from 1843 to 1846, and between the latter date and 1857 to have increased again. This is the converse to the secular change experienced at Toronto, where the dip was increasing from 1843 to 1859 , and then began to decrease.

Determinations of Total Force.

More than usual interest is given to the observations at this station, and the one last preceding, by the fact that they are the only stations situated to the eastrard of the axis of the closed oval of maximum intensity laid down by Sabine; and are, therefore, the principal witnesses to the physical fact of a diminution of intensity as we proceed to the eastward, after passing the meridian of $94^{\circ} \mathrm{W}$. on the parallel of $55^{\circ} \mathrm{N}$. Gauss's celebrated memoir on the 'General Theory of Terrestrial Magnetism,' published in 1838, ${ }^{2}$ had already indicated the existence of such a closed feature, and included this region within it; but its precise geographical place and limits remained to be fixed by observation. The state of disturbance which prevailed at the time of my visit was unfavour-

[^49]able; but the observations were multiplied, and their general testimony confirmed by those of Lieut. Blakiston in 1857. There is an exception in the results by Fox's needle C, which I find it necessary to omit. It had undoubtedly contracted rust on the axles, impeding its free movement, and all the angles of deflection are too small.

The following is a summary of the other results:-

Total Force	Relative	Absoluta	w.
July 24. Fox A .	1.8605	14.081	(6.0)
, ," Lloyd B.	1.8571	14.050	(2.0)
25. Fox A	1.8626	14.097	(6.0)
, Lloyd A	1.8136	$13 \cdot 952$	(25)
", ., В B	1.8510	14.010	(2.0)
$20 ., \mathrm{B}$	$1 \cdot 8612$	14.087	(2.0)
, " B	$1 \cdot 8608$	14.084	(2.0)
	1.8574	14.064	(2.25)

Absolute IIorizontal Force.

This observation was made on July 26, which proved to be a day very unfarourable for the purpose. It was a day of considerable magnetic disturbance, besides being so boisterous that a tent put up to shelter the Bifilar magnctometer was blown down between 4 and 5 p.a., rendering the instrument for the time unserviceable. Readings of the Declinometer and Bifilar were taken at intervals of ten minutes during the progress of the obserrations, but no use can be made of them.

In the reduction of Bar 31 I apply the value of m, determined by the observation preceding and following, to the value of the ratio $\frac{m}{\lambda}$, determined hy deflection at two distances, viz. :-

$$
\begin{array}{lccccccc}
\begin{array}{llll}
\text { July } 14 \\
\text { August } 16 & . & . & . \\
& . & . & . \\
& \text { Mean } & . & . \\
& . & . & m=0.3906 \\
& & . & . \\
0.3909 \\
\hline
\end{array}
\end{array}
$$

Also :-

$$
\begin{aligned}
& u=\stackrel{\circ}{28} 4^{4} 55 \text { at } r=1 \cdot \frac{\text { ft. }}{6257} \text { whence } X=1 \cdot 4945 \\
& u_{1}=12 \quad 48 \cdot 2 \text { at } r_{1}=1 \cdot 32.57 \quad, \quad X=1 \cdot 5090
\end{aligned}
$$

The time of vibration of Bar 31 was observed, but is affected by some error, being $7 \cdot 2275$ s, which is too little, and I think it
necessary to reject it. There is a marginal note in the original entry, ' Q. A morement of the telescope?'

Magnet 30	Observed T	m	x	¢	w.
	$\begin{aligned} & \mathrm{s} \\ & 69613 \end{aligned}$	$0 \cdot 4342$	1.5086	$13 \cdot 942$	(1.5)
	-	$0 \cdot 3907$	1.5018	$13 \cdot 875$	(1.0)
			1.5052	$13 \cdot 908$	(0.25)

Allowing proportional weight to all the determinations, the mean is 1.051 , or 1.8564 , and taking $14 \cdot 203$, being the mean at stations CL, CLV, and CLVII, as the force for comparison, we have a reduction amounting to nearly $1 \cdot 07$ per cent., or $\frac{1}{93}$ rd part of the quantity, in about 160 miles.

Lieut. Blakiston found the total force in August 1857 :-

By statical instruments By absolute determinations
.
Mean .

I left York Factory on July 28 to return by the same route to Norway House. The observations on this return journey have been given already in their geographical order, but it may be convenient to subjoin the stations of each day in order of date.

Left York Factory at 2.50 д.м. Breakfast halt 7.25 to 8.15.
July 28.-At noon, about five miles below the Shamatawa Station, p.m. Variation at the Shamatara.

July 29.-Left 4 A.m. Breakfast halt 7.45 to 8.45. Reached Fox's River at 4 p.m.

July 30-Ascending IFill River.
July 31.-a.m., at White Earth Portage, on Hill River.
August 1.-a.n., at the Deril's Handing Place. Noon, at Creek Portage.

August 2.-a.n., at the Long Portage Jack River. Noon, at the second Portage Jack Rirer.

August 3.-A.ns., on Kinee Lake. Noon, on Knee Lake, near the Knife Portage. p.м., at Oxford House.

August 4.-a.m., on Holey Lake. Noon, on Itoley Lake.
Lugust 5.-p.n., at White Fall Portage. Night, at the Painted Stone lortage.

August 6.-p.m., on Hairy Lake.
August 7.-Noon, on East Riror. r.m., at Normay Iouse.

The observations of Sir John Franklin in 1819 on the irregular variations observed on Hayes, Steel, and Hill rivers, between long. $92^{\circ} 26^{\prime}$ and $94^{\circ} 22^{\prime} \mathrm{W}$., are borne out by the last five stations. 'The results,' he observes, ' of the observations obtained in Hayes, Steel, and Hill rivers were so rery variable that no inference can be drawn from them as to any proportionate increase or decrease of rariation in adrancing to the westward, and it would be difficult to assign any canse for these irregularities in the two lower rivers, whose banks are entirely composed of alluvial soil. The rocks in Hill River occasionally contained magnetic iron ore.' (I. p. 633.)

The following observation was commmicated to me in MS. by Dr. J. Rae, and has not been before published :-
(b) At Fort Churchill. Lat. by observation, $58^{\circ} 43^{\prime} 50^{\prime \prime}$; long. $94^{\circ} 14^{\prime}$.

The observations of this distinguished Aretic traveller leing very nearly related both in time and in geographical connection with my own, and only published in the work already referred to, I subjoin them with his permission, together with a few made by Sir Jolm Richardson and himself in a subsequent voyage (see p. 116).

The mean declination at Fort Confidence was $50^{\circ} 43^{\prime} \cdot 4 \mathrm{E}$. The mean inclination $84^{\circ} 50^{\prime} \cdot 6$.

The value of the total force deduced by Captain Younghusband from the observations of absolnte horizontal force was $18 \cdot 107$, riz. :-

$$
\begin{align*}
& \phi=X \text { secant } \theta \\
& "=1 \cdot 205 \text { secant } 84^{\circ} 50^{\prime} \cdot 6 . \\
& "=13 \cdot 407 .
\end{align*}
$$

But a much higher value resulted from observations with an inclinometer fitted with deflectiou apparatus, viz: :-

$$
\phi=13.886
$$

Table XVI.
Stations North of York Factory.

Date	Station	Lat.	Long	Dip	Horiz. Force.	Total Force. ${ }^{1}$	
						A	B
			W				
$\begin{aligned} & 1846 . \\ & \text { June } 20 \end{aligned}$	Creek	\% 52.0	¢®2 20	8 ± 46.4			
July 1-4	Churchill . .	583.50	9 ± 14	84 $46 \cdot 8$			
",8	Inapp's Bay (1).	$619 \cdot 42$	-	$8647 \cdot 3$			
	Vear 'Wager River'	$6 \pm 6 \cdot 0$ $6510 \cdot 0$	880	86 $36 \cdot 5$ 87 $10 \cdot 6$			
	Near Wager River Repulse Bay	$6510 \cdot 0$ 6632.0	-	$\begin{array}{ll}87 & 10 \cdot 6 \\ 88 & 16.7\end{array}$			
August 3	repulse 3 m . of Cape	- 06	-	8516%			
	Lady Pelly	-	-	$88-7 \cdot 1$			
Norember	Fort Hope (No. 3)	6632	$8656 \cdot 0$	83.8			
December	", (No.4)	"	"	$88 \quad 14 \cdot 0$			
1847.							
January	", (No.1)	',	"	$88317 \cdot 5$			
February	", (No.2)	,"	",	$88 \quad 12 \cdot 2$			
1849.							
October	Fort Confidence	6654	11849	$8449 \cdot 4$	$1 \cdot 235$	$13 \cdot 640$	$13 \cdot 402$
Nosember	,	,	,.	$8451 \cdot 1$	$1 \cdot 198$	$18 \cdot 231$	13968
December	"	"	"	$8450 \cdot 0$	$1 \cdot 177$	$12 \cdot 999$	$14 \cdot 243$
1850.							
January	"	"	"	Q4 48.8	-	-	14.025
Februars	,.	",	",	84539	1.218	13.364	13.894
March	"	"	"	$8450 \cdot 4$	$1 \cdot 198$	$13 \cdot 231$	$13 \cdot 801$

The quantities are very irregular in both series. Applying the mean dip, we have ly series A a range from $11 \cdot 62$ to $15 \cdot 07$, and in series B a range from $12 \cdot 23$ to $1+73$. The mean of the whole is $13 \cdot 646$, and this agrecs best with my obserrations on Mackenzie's Piver and Great Slave Lake, viz.-

It is to be hoped that some light will be thrown on these excessive fluctuations he observations of the International Circumpolar Expeditions of 1882-3.

1 See Mafmetical and Metoonngical Observations at Furt Confidence in Great Bear Lake, by Sir John lichardson, C.B.; Reduced and discussed by Capt. Younghusbaud. Ii,i. Lomdon. 18Ẽ5.

Dr. R. Bell has favoured me with the subjoined list of variations observed by himself in 1879 at stations intermediate between Dr. Rae's and my own. They refer to an epocli thirty-six years later than the latter, and are therefore adapted to the purpose of giving evidence on the subject of secular change in that interval of time.

The latitudes and longitudes not marked в are taken from his map accompanying a geological.report for 1878, unless otherwise explained ; but they are very little to be relied on.

Table XVII.
I'ariations North of Fork Factory, 1879.

	Station	Lat.	Long.	Var.
1	Fort Churchill		9it 14	$11^{1} 0 \mathrm{E}$.
2	Churchill R ., 27^{m} from mouth	58220	$9+10$	630
	Churchill 1 ., $22^{m} \mathrm{~N}$. of the mouth of the Little Churchill R.	57470	9512	
3	At the N. side of the junction of these two rivers.	57310	95) 30 '	1230
4	Little Churchill R., $5^{\mathrm{m}} \mathrm{N}$. of the next station	57120	9510	1030
5	Little Churchill R., $24^{\mathrm{m}} \mathrm{S}$. of its junction with the Great ('hurchill R.	$57 \quad 70$	950	1130
6	Nelson R., 63^{m} from K.E. extremity of Beacon Point, or Point of Marsh	56390	$94 \quad 0$	845
7	Nelson li, lowest Limestone Rapid, 77^{mm}. from Point of Marsh .	5636148	9415	1130
8	Nelson R., Broad Rapid, 23^{m} S.W. frcm the last	56 85	9450	1130
9	Nelson R., outlet of Split Lake ${ }^{3}$. .	$5616 \quad 5$ в	9710	180
10	Grass R., outlet of Witchin, or Stinking Lake	56130	9713	1630
11	Nelsou R., N. side of outlet of Sepiwesk Lake, at S. end of Cross Portare	$5513 \quad 5$ в	9750	1630
12	Nelson T., Duck Portage, outlet of Duck Lake.	2t 330	¢ 0	19
13	Nelson R., $2^{\text {m }}$ below White Mud Falls ${ }^{\text {a }}$	54458 в	9810	$14: 0$
14	Western Channel of East R., $5{ }^{\text {mi }} \mathrm{S}$. of Pipestone Lake.	54380	985	1630
15	Junction of Pine R. and East R., G $^{\mathrm{m}}$ below Sea Tiver Falls	$5420 \quad 0$		

[^50]
SECTION IV.

NORWAY lioUse, LALE Winnifeg, to FORT CHIPEWYAN, LAKE ATILABASCA.

About 1,090 miles.
August 12, 1813.-I left Norway Honse at 3.30 a.m., following the Saskatchewan brigade of boats, which had started the previous day.

Before quitting the station I substituted a new axle for the unserviceable one of Fox's needle C, and took two complete sets of observations to furnish a base for future intensitios referred to Norway Housc.

Weight	Angle		Nat sin
	\bigcirc	'	W.
15) gris.	19	$32 \cdot 2$	-1115
$2 \cdot 0$	26	245	$\cdot 1131$
2\% "	34	$12 \cdot 0$	-1125
			-1130
35	52		$\cdot 1189$

Observed in the middle of the day at Old Norway IFouse, already given as Station C. I observed again the temperature of boiling water, for the purpose of ascertaining the height of the lake above the sea. This was done on many oceasions, and gave a mean elevation of 773 feet. It has since been determined by the surreyors of the Camada Pacific Railway to be about 710 feet, the elevation currently adopted. Encamped at 8 p.m.

CLXIlI. 1 n!ynst 13.-Started at 4 A.m. Observed on the North Shore, in lat. $53^{\circ} 53^{\prime}$; long. $98^{\circ} 39^{\prime}$.

CLXIV. Observed lat. at noon from the lake horizon, $53^{\circ} 50^{\prime} 24^{\prime \prime}$; a bed of peat about 8 feet thick here formed a cap to the low cliff forming the lake shore.
CLXV. Observed again on Macintosh Island, an island off Limestone Point, not named on Dr. Bell's map. Lat. $53^{\circ} 40^{\prime}$; long. $99^{\circ} 5^{\prime} \mathrm{F}$. (Bell, $99^{\circ} \mathrm{H}^{\prime}$).

$$
\left.\begin{array}{ccccccc}
\text { Variation, I. } 2.54 & \text { r.m. } & . & . & 21 & 5 \pi \cdot 6
\end{array}\right\} 21^{\circ} \quad 39^{\prime} 4 \mathrm{E} .
$$

I did not note the geological formation of Macintosh Island, and the observation was not reduced until long after I had quitted it; but I have little doubt that it will prove to be an island of some intrusive formation, upstanding in the limestone basin of the lake. ${ }^{1}$
CLXVI. We encamped at 8 p.m. at what proved to be, after we were landed, a mere bank of sharp limestone shingle, between the lake and a swamp, where it was difficult to find a smooth place for sleeping.

August 14.-We were detained at this spot until six in the evening by a heary swell from the lake, which made it impossible to proceed. The formation was limestone, abounding in fossil fish, orthocerata, and trilobites of large size. Observed lat. $53^{\circ} 31^{\prime} 54^{\prime \prime}$; long. $99^{\circ} 12^{\prime}$.

In this case the dip by Gambey appears to be less than it should be, the station being presumably, from its geological formation, free from disturbance.

[^51]This station was formerly described as near the 'First Rocky Point' of Franklin, but the latitude is that of his 'Second Rocky Point,' which agrees better with a run of 4^{h} or 5^{h} from Macintosh Island.

We were enabled to proceed at 6 p.m., and encamped four or five miles further on, at the mouth of Buffalo River. The spot is identified by the descriptive particulars given in a letter written a fow days later. 'A narrow channel hardly visible from the lake, opening through a white shingly beach, which led us into a considerable lake or bay, totally landlocked, with black water, which contrasted curiously with the chalky tint of Lake Winnipeg.' The canoe had to be sent back from here to the place of the morning's detention, which was but three or four miles off.
CLXVII. August 15.-Left at 2 a.m. Observed at the mouth of the River Suskatchewen. Lat. $53^{\circ} 17^{\prime}$; long. $99^{\circ} 25^{\prime}$.

$$
\text { Variation, } 7.56 \text { А.м. } 16^{\circ} 39^{\prime} \cdot 2 \mathrm{E} \text {. }
$$

'The N.E. side of the actual mouth of the river was bearing N. 30° E. at half a mile distance.'
CLXVIII. Observed at noon, having entered the river. Lat. $53^{\circ} 10^{\prime} 38^{\prime \prime}$.
CLXIX. Observed again at the lower (east) end of the Grand Retpid, which was also a station of September 2, 1844, when, howcver, we ran the rapid in flood instead of making a portage, one of the most hazardous experiences of my voyage. Lat. by account, $53^{\circ} 8^{\prime}$; long. $99^{\circ} 27^{\prime}$.

Franklin observed at the other, or west end. Lat. $53^{\circ} 8^{\prime} 25^{\prime \prime}$; long. $99^{\circ} 28^{\prime} 2^{\prime \prime}$.

Only one limb of the sun could be seen on the last occasion.

Total Force	Relative	Alsolute	w.
1843. Fox A	$1 \cdot 8741$	$14 \cdot 184$	(6.0)
, C.	1.8608	14.084	(4.0)
1844. Lloyd B	$1 \cdot 8760$	$14 \cdot 199$	(2.5)
Mean	$1 \cdot 8702$	$14 \cdot 155$	(125)

Horizontal force in absolute measure, 1844 :-

By Magnet No. 30		$\begin{aligned} & \text { Correctell T } \\ & \text { s } \\ & 4.8097 \end{aligned}$	$\begin{gathered} m \\ 0 \cdot 3975 \end{gathered}$	$\begin{gathered} x \\ 2 \cdot 3469 \end{gathered}$	$\begin{gathered} \phi \\ 14 \cdot 134 \end{gathered}$	$\begin{gathered} w . \\ (1.0) \end{gathered}$
"	, 31	$5 \cdot 1558$	$0 \cdot 3514$	$2 \cdot 3305$	14.089	(1.0)
"	, 17	$5 \cdot 3157$	$0 \cdot 6700$	$2 \cdot 3388$	14.085	(1.0)
					$14 \cdot 102$	(0.3)

The mean, allowing weight as above, is $1 \cdot 8684$, or $14 \cdot 141$.
I halted at the upper end of the portage, and there found the Saskatchewan brigade of boats, under Mr. Harriot, already encamped.
CLXX. August 16.—Started before the Brigade, and reached Cross Lake, about half a dozen miles above the Rapid. Two or three hours later the Brigade came up, and here we were all detained by wind on the east side of the lake until late in the afternoon of the following day. Observed at noon. Lat. $53^{\circ} 10^{\prime} 7^{\prime \prime}$; long. $99^{\circ} 34^{\prime}$.

Variation, 9.34 A.M. Dip, p.ar., Gambey No. 1					$\begin{array}{cc} 18 & 3 \cdot 7 \mathrm{E} . \\ 80 & 28 \cdot 2 \end{array}$
Total Force			Relative	Absolute	w,
Fox 1 .			1.8761	14•197	(6.0)
$\stackrel{\text { C }}{\text { Mloyd B }}$.		1.8552	14.041	($4 \cdot 0$)
	-	-	1.8767	14.204	(2.5)
	Mean	-	1.8695	$14 \cdot 150$	(1.25)

Horizontal force in absolute measure, by ribration and deflection :-

		Corrected I	m	x	\$	r.
		5 ${ }_{5}^{\mathrm{s}} .6031 \mathrm{~s}$	$0 \cdot 4306$	$2 \cdot 3477$	$14 \cdot 177$	
"	"	$4 \cdot 6167$	0.4310	$2 \cdot 3495$	$14 \cdot 187$	(1.5)
	31	5.8808き	$0 \cdot 3909$	2:3479	14.178	(1.5)
"	"	4.8516	$0 \cdot 3931$	$2 \cdot 3614$	14.250	(1.5)
					$14 \cdot 199$	(0.6)

The letter \cong indicates that the bar was vibrated in a stirrup.
Combining these ralues by weight, the mean for the station is 1.8624 , or 14.096 .

August 17.-The wind subsided, and we were enabled to advance towards evening, experiencing considerable difficulty in finding a landing place. 'We reached a small lake, or expansion of the river, which was so shallow that we searched a long time for a place where we could approach the shore. At last we succeeded, and after forcing my way through reeds and rushes almost as high as myself, I found a tolerably clear space, where we slept without a tent, as the place did not admit of unloading the canoe' (Letter).
CLXXI. August 18.-Left at 4 a.m. Observed at noon on Hare Island (Isle aux Lievres), Cedar Lake, a narrow limestone island about the middle of the lake. It is not named on my map, but is probably off Rabbit Point, called by Franklin 'Long Point.' Lat. $53^{\circ} 12^{\prime} 9^{\prime \prime}$; long. 100°.

mbey			
Total	Relative	Absolute	.
Fox A	$1.8581{ }^{1}$	14.063	(0.6)

CLXXII. Observed for time at 4 p.s., on another island on the west side of the lake. Lat. $53^{\circ} 17^{\prime} 8$; long. $100^{\circ} 12^{\prime}$.
CLXXIII. August 19.-Observed on the west shore of Muddy Lake, in what is marked on some maps as the delta of the Saskatcherwan. Lat. $53^{\circ} 19^{\prime} \cdot 3$; long. $100^{\circ} 35^{\prime}$.

Variation, 7.48 A.M. $18^{\circ} 32^{\prime} 9 \mathrm{E}$.
CLXXIV. I observed on Isle des Festins, or Deril's Drum Istand, about a quarter of a mile north-west of the last station. Lat. $53^{\circ} 19^{\prime} .5$; long. $100^{\circ} 36^{\prime}$. Both spots are in the limestone district, and scarcely require to be regarded as separate stations.

Horizontal force in absolute measure :-

	Corrected T	m	x	ϕ	w.
Magnet 30	${ }_{4}^{\text {s }} \cdot 7485$	$0 \cdot 3975$	$2 \cdot 4078$	13.866	$(1 \cdot 0)$
,, 31	$5 \cdot 0968$	$0 \cdot 3514$	$2 \cdot 3940$	13.786	(1.0)
" 17	$5 \cdot 1934$	$0 \cdot 6700$	$2 \cdot 3947$	13.790	(1.0)
			$2 \cdot 3988$	13.814	(0.3)

September 1, 1844.

[^52]CLXXV. Encamped on the most westerly of the Pine Islands, and observed lat. by Polaris, $53^{\circ} 30^{\prime} 45^{\prime \prime}$.

Auyust 31, 1844.
CLXXVI. August 19 (resumed).-Observed at noon. Lat. $53^{\circ} 30^{\prime} 51^{\prime \prime}$.
CLXXVII. August 20.-Left camp at 3.20 a.m. Observed at noon. Lat. $53^{\circ} 46^{\prime} 47^{\prime \prime}$.

In the afternoon I visited the missionary station of Christchurch, otherwise called The Pas, then in its infaney, and in temporary charge of a young half-breed catechist named Budd.
CLXXVIII. Encamped about four miles beyond this place, probably at the Round Turn, a well-marked spot, and observed lat. by Polaris, $53^{\circ} 48^{\prime} 51^{\prime \prime}$; long. $101^{\circ} 23^{\prime}$.

Returning to the same spot August 31, 1844, I made other observations.

$$
\begin{aligned}
& \text { Variation by collimator, } 10.39 \text { 4.M. . . } 1956.8 \mathrm{E} \text {. } \\
& \text { Dip, Gambey No. } 1 \text {. } 80 \quad 24 \cdot 4
\end{aligned}
$$

Horizontal force in absolute measure :-

Magnet No. 80		$\begin{gathered} \text { Corrected } \mathrm{T} \\ \stackrel{\mathrm{~s}}{ } \mathbf{4 . 7 7 0 5} \end{gathered}$	$\begin{gathered} m \\ 0.3075 \end{gathered}$	$\begin{gathered} x \\ 2 \cdot 3857 \end{gathered}$	$\begin{gathered} \phi \\ 14 \cdot 315 \end{gathered}$	$\begin{gathered} W \\ (1 \cdot 0) \end{gathered}$
"	, 31	$5 \cdot 1090$	$0 \cdot 3514$	$2 \cdot 3835$	14296	(1.0)
"	, 17	$5 \cdot 1978$	$0 \cdot 6700$	$2 \cdot 3905$	14.344	(1.0)
				$\underline{2 \cdot 3866}$	$\overline{14.318}$	(0.3)

CLXXIX. August 21.-Left 3.55 a.m. Observed a little to the eastrard of the Big Bend. Lat. $53^{\circ} 52^{\prime}$; long. $101^{\circ} 28^{\prime}$.

$$
\text { Yariation, } 8.6 \text { د..x. } 20^{\circ} 45^{\prime} 4 \mathrm{E} .
$$

CLXXX. Observed at noon at the Big Bend. Lat. $53^{\circ} 58^{\prime} 22^{\prime \prime}$.
CLXXXI. August 22.-Left 3.40 a.m. Observed to the eastward of the channel ealled the Little River, which is one of the arms into which the Saskatchewan divides above Cumberland House, apparently the same as 'Tearing River' on recent maps. Lat. $53^{\circ} 51^{\prime}$; long. $101^{\circ} 50^{\prime}$.

Tariation, 7.32 ...м. $17^{\circ} 45^{\circ} \cdot 2 \mathrm{E}$.

This result is irregular, and as the observation was good, seems to indicate local disturbance.
CLXXXII. Observed at noon about one mile south-east of the small lake formed by an expansion of the Little River. Lat. $53^{\circ} 52^{\prime} 42^{\prime \prime}$.

Cumberland House was reached about 6 r.м.

Cumberland House.

CLXXXIII. The latitude and longitude of this station having been determined by the officers of Franklin's first expedition, who wintered here in 1819, and again in 1825, I adopted their results, and made use of the longitude for rating my chronometer. Lat. $53^{\circ} 56^{\prime} 40^{\prime \prime}$; long. $102^{\circ} 19^{\prime} 13^{\prime \prime}$, or $6^{\mathrm{h}} 49^{\mathrm{m}} 16^{\mathrm{s}} \mathrm{W}$.

It is so placed in the map of the North-West Territory, dated 1882. I observed here both going and returning.

August 23, 1843.		Total Force	Relative	ϕ	IT.
		. By Fox A	1.8639	$1+107$	(6.0)
"	"	, B	$1 \cdot 8726$	$14 \cdot 173$	(4.0)
"	"	, C	$1 \cdot 8510$	14.010	(4.0)
August 24	"	A	1.8718	$14 \cdot 167$	(6.0)
",	"	, 1 B	1.8723	$14 \cdot 171$	(4.0)
"	"	\% C	1.8689	$14 \cdot 145$	(4.0)
"	"	By Lloyd B (1)	1.8680	$14 \cdot 138$	(2.5)
	"	(2)	$1 \cdot 8703$	14.156	$(2 \cdot 5)$
"]-6686	1.4.1420	(83)

By complete observations of vibration and deflection:-

Aug. 23, 1843.	$\begin{gathered} \text { Corrected } T \\ s \end{gathered}$			m	x	¢	W. (1•5)
	Magnet	30	5.5994 g	0.4317	$2 \cdot 3452$	14209	
	"		$4 \cdot 6163$	$0 \cdot 4316$	$2 \cdot 3449$	$14 \cdot 207$	(1.5)
"	",	81	5.9089 \%	0.3920	2:3375	$14 \cdot 163$	(1.5)
"	"	"	$4 \cdot 8815$	$0 \cdot 3919$	$2 \cdot 3368$	14.158	(155)
						$14 \cdot 1842$	(0.6)

I here apply the dip observed in 1843.
By observation of vibration only, August 29, 1844 :-

		Corrected T		x	ϕ	w.
Magnet	No. 30	4.7775	$0 \cdot 3976$	$2 \cdot 3782$	$14 \cdot 163$	
"	,, 31	$5 \cdot 1080$	$0 \cdot 3515$	2.3828	$14 \cdot 191$	(1•0)
"	, 17	$5 \cdot 2355^{1}$	$0 \cdot 6700$	$2 \cdot 3562$	14.0:32	$(1 \cdot 0)$
					$14 \cdot 129$	(0.30)

I here apply the dip observed in 1844.
We have thus seven independent determinations for Cumberland House ; and allowing weight as here assigned, the mean is, total force in relative value, $1 \cdot 8686$; in absolute value, $14 \cdot 143$.

August 24, 1843.-Left Cumberland House in the afternoon for Isle à la Crosse, but was obliged to land soon after on a small island in Pine Island Lake, about two miles distant from the Fort, and wait until the wind abated.

Observations on the Saskatcherwan above Cumberland House will be found below, Stations CCLXXX to CCXC.
CLXXXIV.-Station in Pine Island Lake, about two miles from Cumberland House. Lat. by account, $53^{\circ} 58^{\prime}$; long. $102^{\circ} 17^{\prime}$.

The planet Jupiter being favourably situated about 12° above the horizon, I took two sets of azimuths for variation.

$$
\begin{aligned}
& \text {, } 8.29 \text {, " } 310 \text {, . . } 1814 \\
& 17 \quad 59 \cdot 7 \mathrm{E} .
\end{aligned}
$$

CLXXXV. August 25.-Left at 4 a.m., traversed Pine Island Lake of Franklin, 'Beaver or Sturgeon' lake on modern maps. Observed from the lake horizon at noon, lat. $54^{\circ} 14^{\prime} 34^{\prime \prime}$; encamped on the River Malign, a voyageur's name for the shallow, tortuons,

[^53]rapid stream flowing out of Beaver Lake proper, which is to the north of Pine Island Lake. The River Malign is Sturgeon River of Franklin's Tables, but not named on his map.
CLXXXVI. August 26.-On the River Malign, observed 4.m. in lat. by account $54^{\circ} 21^{\prime} \cdot 4$; long. $102^{\circ} 10^{\prime}$.
$$
\text { Variation, } 8.35 \text { А.м. } 21^{\circ} 23^{\prime} \text { E. }
$$
CLXXXVII. Observed about 17^{m} past noon on an island in the stream above Crooked Rapid. Lat., by reduction to meridian, $54^{\circ} 23^{\prime} 17^{\prime \prime}$.
CLXXXVIII. Entered Beaver Lake, and observed on Limcstone Point, near the outlet. Lat. by account, $54^{\circ} 26^{\prime}$; long. $102^{\circ} 10^{\prime}$.

Dip by Gambey No. 1, 2-3 r.ar.			$34^{\prime} \cdot 2$
Total Force	Relative	Absolute	W.
Fox A	$1 \cdot 8630$	$14 \cdot 100$	(6.0)
, C	$1 \cdot 8398$	$13 \cdot 925$	(4.0)
	1.8537	$14 \cdot 030$	(1.0)

I commenced at this station a practice which was continued until my arrival at Lake Athabasca, of observing at all favourable opportunities the time of vibration of the three magnets numbered respectively 30,31 , and 17 , for the relative horizontal force at the station, as a confirmation of the observations of relative total force.

On comparing the magnetic moment of these magnets, as ascertained at Cumberland House on August 24, with its amount at Isle à la Crosse on September 11, a very evident reduction is seen.

V alues of m.			
	Cumberland House Day 236 (Ang. 24)	Isle à la Crosse Day 252 (Sept. 9)	Ft. Chipewyan Day 286 (Oct. 13)
	Corrected T	m	X
Magnet 30	- 0.7036	$0 \cdot 6920$	$0 \cdot 6882$
, 31	- $0 \cdot 4312$	$0 \cdot 4155$	$0 \cdot 1173$
, 17	- 0.3921	$0 \cdot 3818$	$0 \cdot 3855$

This loss occurred in eighteen days, and there is no decisive evidence whether it was progressive or resulted from some accident affecting them all together; on that account Sabine recorded the results (Table XLII), but did not make use of them. I do not, how-
ever, consider the error possibly involved in the supposition that it was uniform and progressive, one which necessitates their entire exclusion from view, as they do in fact when so treated give support to the results derived from the Fox and Lloyd needles. From Isle à la Crosse to Lake Athabasca the magnetism was nearly stationary, the amount of change being at least insignificant.

In the subjoined conversions I have applied a value of $m=$ the magnetic moment of the bar on the day of observation, by simple interpolation, on the supposition of uniform change.

August 26.-On Beaver Lake (continued).

		Corrected T	m	x	ϕ	w.
		$\stackrel{\text { s }}{4} \times 6671$	$0 \cdot 4289$	2.3101		
"	31	$4 \cdot 9447$	$0 \cdot 3908$	$2 \cdot 2869$	$13 \cdot 958$	(1.0)
"	17	$5 \cdot 2050$	$0 \cdot 7015$	$2 \cdot 2769$	$13 \cdot 898$	(1.0)
				2•2913	13.985	(0.3)

The mean by both methods, weighted as above, is $1 \cdot 8540$, or $14 \cdot 032$.
CLXXXIX. August 27.-Left 3.30 a.m., observed at noon about $1 \frac{1}{2}$ mile north of the mouth of Hay Ricer, a stream flowing from the west, which is inserted on Franklin's route, but not marked on recent maps. Lat. $54^{\circ} 42^{\prime} 55^{\prime \prime}$.
CXC. Reached the Carp Portage, on 'Great River.' Lat. by account, $54^{\circ} 47^{\prime} \cdot 2$; long. $102^{\circ} 39^{\prime} \cdot 5 \mathrm{~F}$. (by chron. $102^{\circ} 46^{\prime} \cdot 6$), and observed:

Variation, 2.23 r.ar. 248 . 6 E.
Dip by Gambey No. 1, 1.30 p.... . . . $80 \quad 39 \cdot 6$
Force not observed.
CXCI. August 28.-Left at 4.10 a.m. Observed at the Pine Portage, or P. des Epinettes, leading into Heron Lake. Lat. by Franklin's map, $55^{\circ} 4^{\prime}$; long. $102^{\circ} 42^{\prime} \mathrm{F}$.

Mean of both, $1 \cdot 8677$, or $14 \cdot 136$.
CXCII. August 29.-Left 4 a.m., reached the Frog Portage, leading into English or Churchill River. Lat. by account, $55^{\circ} 27^{\prime}$; long. $103^{\circ} 19^{\prime} 5 \mathrm{~F}$.

Mean by both observations, weighted as above, $1 \cdot 8520$, or $14 \cdot 017$.
We here enter what is called on the maps the Missimnipi, Churchill, or English River, a succession of irregular basins connected by chamels of erosion in granitic rocks. The valuable résumé of information respecting this region, compiled by Mr. Sandford Fleming, which qualifies every square of one degree, had, so late as 1879, the stereotyped phrase 'nothing reliable known' against every section. ${ }^{1}$ The state of the weather in my passage almost precluded observation, and such memoranda as were made are lost.

August 30.-No observations. The rain was almost unceasing about this time.
CXCIII. August 31.-Observed at a portage, of which the name is not recorded, about three miles west of Rapid River. Lat. by account, $55^{\circ} 26^{\prime}$; long. $104^{\circ} 26^{\prime} \mathrm{F}$. (chron. $104^{\circ} 42^{\prime}$). The sun was clouded over after the sights for time, and only one sight could be obtained for variation, giving at 9.11 А.m. variation $25^{\circ} 21^{\prime} \mathrm{E}$.

[^54]CXCIV. Observed at noon, about five miles south of the Mountain I'ortage. Lat. $55^{\circ} 29^{\prime} 37^{\prime \prime}$.
CXCV. Observed again at Little Rock Portage, next beyond and near the last station. Lat. $55^{\circ} 30^{\prime}$; long. $104^{\circ} 34^{\prime}$.

Variation, $\#$ 4.18 r.m. . . 16

This result indicates a powerful local disturbing influence, of which there are traces in all the observations of the next three days. The formation is gneiss and mica slate, but its relations to the Wimmipeg limestones are not determined, and whether the two meet in this neighbourhood or not has yet to be determined. I have subjected the observations to close scrutiny and find nothing to suggest a doubt of their accuracy. The other elements show a like disturbance.

This is a very unusual and excessive force, but was exceeded on Lake Wimnipeg, Station CXXI, and on Lake Superior, Station LII. The dip is about 20^{\prime} less than is due to the position.
CXCVI. Observed again at the place of encampment not far from Otter Portage. Lat. by Polaris, $55^{\circ} 36^{\prime} 18^{\prime \prime}$; but by meridian altitudes of a Aquilæ $55^{\circ} 35^{\prime} 41^{\prime \prime}$; long. by chron. $104^{\circ} 56^{\prime}$.
CXCVII. September 1.-Observed at the east end of Great Decil's Portage. Lat. $55^{\circ} 40^{\prime}$; long. $104^{\circ} 47^{\prime} 46^{\prime \prime} \mathrm{F}$. (By chron. $105^{\circ} 6^{\prime} 6$.)

Variation, 9.27 A.m. Dip, Gambey No. 1, 10 A.m.		$\begin{aligned} & . \quad \begin{aligned} & \circ \\ & \cdot 248.5 \mathrm{E} \\ & \hline \end{aligned} \quad . \quad 80 \\ & \hline \end{aligned}$	
Total ForceFux A	Relative	Absolute	IF.
	1.8670	14.131	(6.0)
, B	1.8666	$14 \cdot 127$	(4.0)
	1.4668	$14 \cdot 129$	(1.0)

Magnet No. 30		$\underset{\substack{\text { corrected } \\ \text { T }}}{\text { c }}$	m	x	ϕ	w.
		4.7649	0.4201	$2 \cdot 2414$	13.600	$(0.0)^{1}$
,	, 31	4.9875	$0 \cdot 3883$	2.3086	14.010	(1.0)
"	, 17	$5 \cdot 1829$	0.6959	2:3101	14.019	(1.0)
				$\overline{2 \cdot 3093}$	$\overline{14.014}$	(0.2)

Mean, allowing weight as above, $1 \cdot 8653$, or $14 \cdot 118$.
CXCVIII. Observed at noon at the upper end of the same portage. Lat. $55^{\circ} 40^{\prime} 26^{\prime \prime}$.

CXCLX. Observed at the encampment Portage des Ecores (Steep-Bank Portage, Richardson). Lat. by Polaris, $55^{\circ} 42^{\prime} 23^{\prime \prime}$; long. (by chron.) $105^{\circ} 29^{\prime} \cdot 4$.
CC. September 2.-Observed at Trout Portage, English river. Lat. by account, $55^{\circ} 42^{\prime} \cdot 5$; long. $105^{\circ} 29^{\prime}$. (By chron. $105^{\circ} 30^{\prime}$.)

$$
\begin{array}{cccccccc}
\text { Variation, } 8.26 \text { a.ar. } & . & . & . & . & . & 21 & 31 \cdot 1 \mathrm{E} . \\
" & 8.32^{2} & \# & . & . & . & . & . \\
21 & 24.9
\end{array}
$$

CCI. Observed at noon at a spot about one and a quarter mile south-east from Harriet Portage. Lat. $55^{\circ} 34^{\prime} 3^{\prime \prime}$.
CCII. Observed again at the encampment, about half a mile
${ }^{1}$ The time of vibration of Magnet 30 is anomalous, and the observation must be rejected. I subjoin the details of it. Ther. $72^{\circ} \cdot 7$.

No.	Chron.Time.	No.	Chron. Time	200 Tibr.	
0		200	$\begin{array}{lll}\text { h. m. } \\ 6 & 49 & \text { s. } \\ 0\end{array}$	15.	
10	633530	210	$64949 \cdot 0$	15.56 .0	
20	$63441 \cdot 0$	220	65036.0	15 55 0	
30	(\% 3528.5	230	651238	15.55%	
40	636160	$\underline{240}$	$65211 \cdot 4$	$1555 \cdot 4$	
50	63738	250	65259.5	15 50. 7	
60	$63752 \cdot 0$	260	$65347 \cdot 0$	1555.0	
70	$63839 \cdot 8$	272	65444.8	15554	
80	63927.5	280	655228	$15.55 \cdot 3$	
90	640160	290	65610%	1554.5	
100	64125	300	65658.0	15559	
Mean time of 200 vibrations.				15 55:35	Obs. T'. of 1 vibr. 4.7768 secs.

The interval should have been $18 \cdot 0$ secs. less, to give a result in agreement with No3. 31 and 17. A loss of maruetic moment amounting to 0.0115 would account for the difierence, and the bar does evince a loss of magnetism on following days.
above the Cardinal Rapid, at the west end of Black Bear Island Lake F. Lat. by Polaris, $55^{\circ} 39^{\prime} 4^{\prime \prime}$.
CCIII. September 3.-Left about 5 a.m. Observed about one mile below the 'Rapide qui parle' (royageur ellipsis for 'Rapide qui ne parle pas,' in allusion to its swift and silent current). Lat. by account, $55^{\circ} 43^{\prime} \cdot 5$; long. $105^{\circ} 50^{\prime} \mathrm{F}$. The position by chronometer was $106^{\circ} 28^{\prime}$, which I cannot reconcile with the map or with nest day's sights, and therefore disregard.

CCIV. Observed 50^{5} before noon at Canoe Portage. Lat. by a single sight reduced, $55^{\circ} 40^{\prime} 30^{\prime \prime} \pm 1^{\prime} ;^{1}$ long. $105^{\circ} 58^{\prime}$.
CCV. Observed at the Pine or Pin Portage, at the east end of Sand-fly Lake. Lat. $55^{\circ} 43^{\prime}$; long. $106^{\circ} 0^{\prime}$.

Mean for the station, $1 \cdot 8524$, or 14.023 .
CCVI. September 4.-Observed at Snale Point. Lat. by account, $55^{\circ} 51^{\prime}$; long. $106^{\circ} 30^{\prime} 1^{\prime \prime} .^{3}$ By chron. $106^{\circ} 38^{\prime}$.

CCVII. Observed again at Snake Rapid, at noon. Lat. $55^{\circ} 44^{\prime} 8^{\prime \prime}$; long. $106^{\circ} 35^{\prime} 2^{\prime \prime}$.

[^55]| Dip ${ }^{\text {, }} 1.30$ r.m., Gambey No. 1 | | | . . | $80^{\circ} \quad 38 \cdot 8$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total Furee
 Fox A | | Relative | Alsolnte | | |
| | | 1.8731 | $14 \cdot 177$ | $(6 \cdot 0)$ | |
| ",
 C | - | 1.8641 | $14 \cdot 109$ | (4.0) | |
| | . | 1.8560 | $14 \cdot 048$ | (4.0) | |
| | | $1 \cdot 8649$ | $14 \cdot 128$ | (1-4) | |
| Corrected T | | m | x | X sic ϕ | IF. |
| Magnet No. 30 | 4.7605 | 0.4203 | $2 \cdot 2657$ | 13.940 | (0.0) |
| ,, 31 | 4.9833 | 0.3877 | $2 \cdot 2733$ | 14.020 | (0.0) |
| , 17 | $5 \cdot 2308$ | 0.6952 | $2 \cdot 2697$ | 13.966 | (0.0) |

These values indicate loss of force, and are rejected.
I was detained for some time at this station, being obliged to send back the canoe down the Rapid, which we had just mounted with much labour, to Snake Point, for a bag of 'Taureau' (Pemmican) left behind by negligence of the men.

There was the first decided frost this night since June 8.
CCTIII. September 5.-No observation, probably on account of weather. Encamped on Knee Lake. A single sight of Polaris gave lat. $55^{\circ} 48^{\prime} 48^{\prime \prime}$.
CCIX. September 6.-Incessant rain ; lut I obtained two momentary sights of the sun on Primeau Lalie. Lat. by account, $55^{\circ} 57^{\prime}$; long. about $107^{\circ} 10^{\prime}$; whence

$$
\text { Variation, } 8.28 \text { A.M. . . . } 20^{\circ} 15^{\prime} 9 \mathrm{E} \text {. }
$$

CCX. September 7.-Olserved at the Portage Somante. at the outlet or north-east end of Lake à la Crosse. Lat. by Franklin's map, $55^{\circ} 54^{\prime}$; long. $107^{\circ} 36^{\prime}$.

Total Force			Relative Absolute	T.		
Fox A	\cdot	\cdot	\cdot	1.8571	14.056	(6.0)
$"$ C	\cdot	\cdot	\cdot	1.8073^{1}	13.679	(0.0)
rejected						

[^56]

September 8.-Observation was again prevented by rain. I reached the Hudson's Bay Fort, on Lake à la Crosse, in the evening.
CCXI. September 9.-At the Hudson's Bay House, or Fort, on Isle à la Crosse Lake. Latitude observed at noon, $55^{\circ} 26^{\prime} 45^{\prime \prime}$; by Polaris, 9.11 p.m., $55^{\circ} 26^{\prime} 53^{\prime \prime}$.

The first is identical with Franklin's latitude in 1819. Simpson made it only $55^{\circ} 25^{\prime} 25^{\prime \prime}$ in 1836, which is exidently too little.

I assume the long. as $107^{\circ} 53^{\prime} 57^{\prime \prime}$ W., or $7^{\mathrm{h}} 11^{\mathrm{mI}} 36^{*}$, being the mean of the following determinations:-

Total Force		Relative	Absolute	w
FoxA (1)		1.8 .577	14.04 .5	(6.0)
" " (${ }^{(2)}$.	1-8.42	14.034	(6.0)
,, B (1)		1.8494	13:988	(4.0)
" " (2)		1.8479	13:986	($4 \cdot 0)$
, U		1.7999	13.623	(0.0)
, "		1.7962	13.595	(0.0)
Lloyd B (1)	.	1.8460	13.972	(2\%)
(2)	-	1.8460	18.972	(2.0)
	Mean	1.8535	14028	(19)

Horizontal force in absolute measure :-

		$\begin{aligned} & \text { Corrected T } \\ & \mathrm{s} \end{aligned}$	m	x	ϕ	W.
Magnet	No. 30	564845	0.4178	$2 \cdot 3861$	18.907	(10)
,	,	4.6 .89	$0 \cdot 4118$	2.3968	$14 \cdot 0: 30$	(1.5)
"	No. 31	50015	$0 \because 3811$	$\because 3 \mathrm{OH5}$	$18 \cdot 91$	(1-\%)
"		4×2.38	0 -3) 10	\cdots - SN0	$1: 966$	(1-5)
"	No. 17	S.1161	(1) $0: 20$	-	-	(1.0)

The mean according to weights is 1.8520 , or $14 \cdot 012$.
September 11.-Left the Fort at 11.40 a.m. Encamped at 7 р.м. No observations.

September 12.-Left camp at 4 A.m. Observation was again prevented by wet weather.
CCXII. September 13.-Observed towards the northern end of Buffalo Lake. Lat. by account, $56^{\circ} 4^{\prime}$; long. $108^{\circ} 40^{\prime}$.

Dip, by Gambey No. 1, 7 a m. .				-	$80^{\circ} \quad 37^{\prime} 0$	
Total Foice Fox			Relative	Absolute	$\begin{gathered} W . \\ (6 \cdot 0) \end{gathered}$	
			$1 \cdot 8545$	$14 \cdot 036$		
, C		- -	1.7862	13.529	(0.0)	rejected
		Corrected T	m	x	\$	w.
Magn	No. 30	4.7694	$0 \cdot 4155$	$2 \cdot 2833$	14.033	(1.0)
"	" 31	4.9986	$0 \cdot 3841$	$2 \cdot 2730$	$14 \cdot 005$	(1.0)
"	, 17	$5 \cdot 2358$	0.6012	2-2880	13.924	(1.0)
					$13 \cdot 993$	(0.3)

The mean adopted is $1 \cdot 8526$, or $14 \cdot 022$.
CCXIII. Observed at noon on Buffalo Lake. Lat. $56^{\circ} 7^{\prime} 14^{\prime \prime}$. The place of A.m. observation was in sight, bearing E. $10^{\prime \prime}$ S., at about three miles distance.
CCXIV. Observed again on the Methy River. Lat. by Polaris, $56^{\circ} 12^{\prime} 35^{\prime \prime}$; long. $109^{\circ} \mathrm{F} .\left(109^{\circ} 9^{\prime} 4\right.$ chron.).
CCXV. Scptember 14.-Observed at the north end of the Long Portage, on Methy River (or River de la Loche), three and a half miles. Lat. by observation, $56^{\circ} 14^{\prime} 41^{\prime \prime}$; long. $109^{\circ} 18^{\prime} \mathrm{F}$. (chron. $109^{\circ} 22^{\prime} \cdot 5$).

By Magnet		Correctel T m		x	¢	$\begin{aligned} & w . \\ & (1 \cdot 0) \end{aligned}$
	No. 30	${ }_{4}^{5} 7106$	$0 \cdot 4155$	2-3408	13.935	
"	„ 31	4.9345	0.3841	2:3323	13.883	(1.0)
"	, 17	5•1690	$0 \cdot 6910$	$2 \cdot 3437$	13:9.50	(1.0)
					$13 \cdot 922$	(0.3)

Mean, by weight, $1 \cdot 8320$, or $13 \cdot 865$.
CCXVI. September 15.-Left at 4.10 a.m. Observed at the line l'ortage. Lat. $56^{\circ} 20^{\prime}$; long. $109^{\circ} 14^{\prime} \mathrm{F}$.
Variation, 8.2 4.m. 25349 E " 8.12 2524.1

Encamped at the Methy Portage.
CCXVII. September 16.—At the Portage de la Loche, or Great Methy Portage, so called pre-eminently, being about twelve miles in length. Observed at the south-east end. Lat. by Polaris, $56^{\circ} 35^{\prime}$; long. $109^{\circ} 37^{\prime}$ F. (chron. $109^{\circ} 45^{\prime} 5$).

Total Force Fox A. , C			Relative 1-8464 1.7954	Absolute $13 \cdot 976$ 13.589	w. (60) (0.0) rejectect
	Corrected T	${ }^{m}$	X	¢	w.
Magnet No. 30	${ }^{4} \cdot 7725$	$0 \cdot 4155$	$2 \cdot 2805$	14.005	(1.0)
31	4.9068	0.3841	$2 \cdot 2745$	13.986	(1.0)
17	5•2313	$0 \cdot 6908$	$2 \cdot 28.90$	14.025	(1.0)
				$13 \cdot 989$	(0.3)

Nean by weight, $1 \cdot 8471$, or $18 \cdot 980$.
CCXVIII. I crossed the Portage in the course of the day, horses being kept here by the Hudson's Bay Company to facilitate the trajet, and observed at night at the upper or north-west end. Lat. by Polaris, $56^{\circ} 43^{\prime} 41^{\prime \prime}$; long. $109^{\circ} 52^{\prime} 15^{\prime \prime}$ F. (chron. $109^{\circ} 57^{\prime} \cdot 9$). Franklin found here a variation $25^{\circ} 2^{\prime} 5 \mathrm{E}$. in July 1820.

September 17.-Before leaving the station observed.

CCXIX. Observed again at noon at the White Earth Portage, P. Terre Blanche, on the Clear Water River. Lat. $56^{\circ} 41^{\prime} 49^{\prime \prime}$.
CCXX. Observed again at the Big Rock Portage. Lat. by account, $56^{\circ} 43^{\prime} \cdot 5$; long. $110^{\circ} 4^{\prime} \mathrm{F}$. (ehron. $110^{\circ} 20^{\prime} 5$).

Variation, 3.43 r.m. $27^{\circ} 48^{\prime} 8$
Encamped at Bonne Portage.
CCXXI. September 18.-Left camp at 6.25 a.m. Observed at Cascade Portage. Lat. by account, $56^{\circ} 42^{\prime} 5$; long. $110^{\circ} 15^{\prime} \mathrm{F}$. (chron. $110^{\circ} 23^{\prime} 6$).

$$
\begin{aligned}
& \text { Variation, } 7.38 \text { A.m. }{ }_{26}^{6} 44 \cdot 9 \\
& \text { " } 8.14 \text {, } 2654.3
\end{aligned}
$$

I reached the sulphur springs between 10 and 11 s.m. The temperature of the water about six inches below the surface was $40^{\circ} \mathrm{F}$., that of the air being $55^{\circ} \cdot 5$, and of the Clear Water River $52^{\circ} \cdot 8$.
CCXXII. Leaving the springs at 11.35 a.m., I observed at noon nearly two miles, or about 25 min . in time, below them. Lat. $56^{\circ} 44^{\prime} 54^{\prime \prime}$.
CCXXIII. September 19.-Observed about two miles below the mouth of the Red Willow (F.), or Pembina River, a tributary of the Clear Water River. Lat. by Franklin's map, $56^{\circ} 39^{\prime}$; long. $110^{\circ} 55^{\prime} \mathrm{F}$.

Dip, Gambey No. 1, 8	0 s.m.		. 80	36.2	
Total Force	Relative			w.	
Fox A	18499			(6.0)	
C	1•799			(0.0)	rejected
Correc:ed T	m	x	¢	w.	
Magnet No. $30 \quad \begin{aligned} & \text { ¢ } \\ & 4\end{aligned}$	0.4155	$2 \cdot 2712$	13.911	(1.0)	.0)
" $315 \cdot 0201$	$0 \cdot 3841$	$2 \cdot 2535$	13:802	(1.0)	-0)
$17 \quad 5 \cdot 259$	0-6900	2.2723	13.921	(1.0)	-0)
			$13 \cdot 876$	(0:3))

Mean by weight, $1 \cdot 8443$, or $13 \cdot 959$.
CCXXIV. Encamped on Pine Island, in the Athabasca, Elk, or Slave River, River La Biche of Franklin. Lat. by Polaris, $57^{\circ} 0^{\prime} 5^{\prime \prime}$; long. $111^{\circ} 20^{\prime} \mathrm{F}$. (by chron. $111^{\circ} 34^{\prime} \cdot 5^{\prime \prime}$).

CCXXY. September 20.-Observed at noon at the mouth of a small stream called River de lu Brat. Lat. $57^{\circ} 18^{\prime} 33^{\prime \prime}$.
CCXXVI. Reached the Pierre an Calumet by Franklin's map. Lat. $57^{\circ} 24^{\prime}$; long. $111^{\circ} 35^{\prime} \mathrm{F}$. (by chron. $111^{\circ} 40^{\circ} \cdot 7$).

Variation, 5.3 p.m., by a single sight				${ }^{\circ} \mathrm{O}$	$35 \cdot 1 \mathrm{E}$.	
		sights	.	25	24.9	
		Mean	. .	25	$43 \cdot 6$	
Dip, Gambey No. I, 2.30 P.31.			. .	81	168	
Total ForceFox A		Relative	Absolute		w.	
		1.9311	14.616		(6.0)	
, C	-	1.8440	13.957		(0.0)	rejected

Needle C, as compared with the last and following station, supports needle A in showing a great increase of force, although the actual value is not to be relied on.

Mean by weight, $1 \cdot 9249$, or $14 \cdot 559$.
This is one of the stations of manifest local disturbance shown by each of the elements and by three independent determinations of force. It probably points to mineral discoveries still to be made. The observation of X would require a dip of $81^{\circ} 26^{\prime} 3$ to give the same total force as Fox A.

CCXXYII. September 21.-Observed at Point Brulé, or Burnt Point, on the Athabasca River. Lat. by account, $58^{\circ} 7^{\prime}$; long. $111^{\circ} 25^{\prime}$.

Dip, Gambey No. 1, 4 p.m.			$8130 \cdot 6$			
Total Force		Relative	Alsolute			
Fox A	- .	- 1.8345			(6.0)	
" C	. .	18184			(0.0)	rejected
	Corrected T	m	x	¢	ш.	
Magnet No. 30	$5 \cdot 0054$	$0 \cdot 4155$	$2 \cdot 0732$	14.043	(1.0)	
31	$5 \cdot 2482$	$0 \cdot 3841$	$2 \cdot 0613$	13.962	(1.0)	
, 17	5.4934	0.6896	$2 \cdot 0794$	14.085	(1.0)	
				14:030	(0.3)	

Nean by weight, $1 \cdot 8 \cdot 09$, or $13 \cdot 033$.
CCXXYIII. September 22.-Left camp at 4.55 a.m. I could obtain no observations this day. We descended the Embarras

River, a branch of the delta of the Athabasca, and encamped not far from the lake.

September 23, 1843.-Favoured by a total absence of ice, the season being usually open, I crossed Lake Athabasea and reached Fort Chipewyan at midday. Here I was warmly received by the late Mr. Colin Campbell, and resided with him until March 5 following. The arrival created a sensation in the small community, for it was twelve years since any traveller had arrived by canoe from the south ; and the self-importance of my royageurs, who had thus happily completed a journey of about 3,600 miles, was conspicuous in their gala attire and gay chansons as we approached the landing. They were very shortly sent off to support themselves through the winter at a fishing station on the lake.

CCXXIX. Fort Chipewyan, on Lake Athabasca.

For longitude I took the mean of Franklin's determinations of 1820 and 1826 , which only differ $40^{\prime \prime}$, riz. $111^{\circ} 18^{\prime} 40^{\prime \prime}$, or $7^{\mathrm{h}} 25^{\mathrm{m}} 15^{\mathrm{a}}$ from Greenwich, and $8^{\mathrm{h}} 5^{\mathrm{m}} 1^{\mathrm{s}}$ from Göttingen.

Variation:-

1. Sept. 23.	By the first six of twelve azimuths, 3.50 p.M.	$289 \cdot 1 \mathrm{E}$
II.	By the last six, at 3.59 p.m.	$27 \quad 8.4$
		2738.7

A movement in azimutl of the sun of $2^{\circ} 26^{\prime} 6$ was followed by a morement of the compass cards of $3^{\circ} 27^{\prime} 3$, an evident jump at the seventh reading. Having no ground for preference I take the mean.
III. October 16.-The variation was observed with the suspended collimator magnet, at 3.52 p..x.

$$
28^{\circ} \quad 30^{\prime} \cdot 8
$$

IV. July 2, 1844.-The variation was again observed with the same magnet at 9.34 д.м. $\frac{29^{\circ} 52^{\prime} \cdot 0}{28^{\circ} 45^{\prime} \cdot 8}$

Total Force		Relative	Alsolute	w.
Fox A, Sept. 25 (1)		1.8263	$13 \cdot 8.3$	(5.0)
	(2)	$1 \cdot 8366$	13:908	(5.0)
	. 9	$1 \cdot 8290$	$13 \cdot 843$	(5.0)
Oc			13.858	(2.5)
By Lloyd B	, Sept. 30	$1 \cdot 8486$	13.986	(1.5)
	Oct. 6	1.8471	13.980	(1.5)
"	, 10	$1 \cdot 8500$	14.002	(1.5)
			13.989	(0.45)

Equivalent in relative force $1 \cdot 8415$.
Needle C is rejected for the reasons already given at Station CCX. The values it gave were as follows:-

The observations of vibration and deflection for the determination of the horizontal force in alsolute measure were multiplied at this station, and included three spare magnets, Nos. 20, 23, and 29, which had not heretofore been employed in this way.

Oct. 13, 1843,		Corrected T		m	x	ϕ	w.
	Magnet	30	$\stackrel{\text { s }}{5}$	$0 \cdot 4177$	$2 \cdot 0247$	13.921	(1.5)
"	",	"	6.1381 \#	$0 \cdot 4169$	2.0209	13.879	(1.5)
,"	"	31	5.2816	$0 \cdot 3858$	2.0301	13.941	(1.5)
"	"	"	6.4017 9	0:3852	$2 \cdot 0269$	13.919	(1.5)
"	"	17	5:57.4	$0 \cdot 6882$	$2 \cdot 0248$	13:004	(1.0)
Oct. 14	,	20	4.9373	0:5154	2.0167	$13 \cdot 849$	(1.0)
,	"	23	$5 \cdot 689$	$0 \cdot 2064$	$2 \cdot 0381$	13:996	(1.0)
,	"	29	4-4147	$0 \cdot 1558$	$2 \cdot 0291$	$13 \cdot 934$	(1.0)
March 1, 1844	"	30	5.0398	$0 \cdot 4207$	2.0249	$13 \cdot 845$	(15)
,"	,	"	6.1234 \ddagger	0.4207	$2 \cdot 0184$	13.801	(1.5)
,	,	31	5.3:40	0.3763	$2 \cdot 0083$	13.731	(15)
	,	"	6.4728	0.3781	$2 \cdot 0201$	13.812	(1\%)
July 2	"	30	5•1507	0.3988	$2 \cdot 0398$	13.947	(155)
"	"	31	$5 \cdot 4725$	0.3568	$2 \cdot 0405$	19.952	(1.5)
"	,,	17	$5 \cdot 6326$	$0 \cdot 6691$	2.0378	13936	(1.0)

We have then-

${ }^{1}$ The dip was not observed in July; I have used the observation of March. The periodical change is rery small. At 'Torontn, by thirty-one years' observations, $-1 \cdots$.

And the final results for this station are-

By Fox's needle A	.				ϕ	W.
" Lloyd's needle B	$13 \cdot 858$	(15)
"Absolute measure	13.989	(0.45)

The mean of the whole is 13.885 , equivalent to 1.8346 on the relative scale, being a little less than was formerly assigned ($1 \cdot 838$).

Although the loss of force in Fox's needle C, first ummistakable at Station CCX, makes the succeeding observations with that needle unsuitable for comparison with the base station (Norway House), after September 4, they are not on that account quite devoid of value. The course follows very nearly the isodynamic line of 14.00 , and in the deviations on either side of that line we find needle C , as compared with itself from day to day, giving results which differ in sifn at one station only (CCXV) from those by needle A, and agree with two exceptions with the changes in the total force assigned independently from the observations of horizontal vibration.

Table XVIII.

Comparison of Total Force by Three Methods of Determination, for the lust Eijht Stations before reaching Athabasca.

Station	$\underset{\phi_{1}}{\operatorname{Fox} A}$	Diff.	$\underset{\phi_{2}}{\text { Fox } C}$	Diff.	$\underset{\phi_{3}}{\text { Vilrations }}$	Diff.
CCX.	$14 \cdot 056$		$13 \cdot 679$		$14 \cdot 038$	
		- 0012		- $\cdot 070$		- 055
CCXI.	$14 \cdot 044$	- •008	$13 \cdot 009$	-. 080	1398.3	$+\cdot 010$
CCXII.	14.036		13.529		13:993	
		- 200		$+\cdot 111$		- 07 l
ccav.	$13 \cdot 836$		$13 \cdot 640$		$13 \cdot 922$	
		+ 030		- . 051		$+\cdot 067$
ccxvil.	$13 \cdot 96$	$+\cdot 025$	$13 \cdot 589$	$+\cdot 029$	$13 \cdot 989$	- •013
Ccxilil.	14.001		$13 \cdot 618$		13.876	
		$+\cdot 615$		$+339$		$+470$
ccaxil	$14 \cdot 616$		18957		$14 \cdot 346$	-.316
Ccxivili.	$13 \cdot 885$	$-.731$	13764		$14 \cdot 030$	- 316
		$-\cdot 027$		-263		$-\cdot 149$
coxilis.	$13 \cdot 856$		1:5020		$13 \cdot 881$	

SECTION V.

From lake cilipewyan, of lake atidbasca, by way of peace river to duntegan. thence by lesser slate lake to EDMONTON, ON THE SASKATCHEWAN, AND FROM THENCE TO CUMberland moUse, on time same river.

Alout 1,340 miles.
Observations north of Peace Piver are reserved for the last Section.

Preliminary Remarlis.-The Peace River at the time of my visit in 1844 was almost unknown, except to a few officers of the Hudson's Bay Company. No scientific traveller had ascended it since Mackenzie in 1789, whose narrative gives but little precise geographical information. In extending, therefore, the observations of my magnetic survey to the westward, I laid myself out particularly to map down the course of the river, taking very detailed notes from hour to hour. These notes were all lost, with my journals, in travelling through the United States in 1846, and I can only now reproduce the observations for latitude and longitude, with a few particulars gleaned from letters and other sources. About 150 miles of the course of the river were, however, laid down from my Field Sketches. The opportunities for observation, withont much loss of time, which are afforded by portages on most of the lines of navigation, are wanting on this stream ; the portage at the Falls (Station CCXXXIX) is the only one in 600 miles, and as the lateness of the season made it of rital importance to press on, my halts were not so frequent as heretofore. This accounts for the stations of magnetic observation being fewer in number and further apart than usual.

July 4, 1844.-I left Fort Chipemyan (CCXXIX) in the forenoon.
CCXXX. July 5.-Entered Peace River, and observed at noon. Lat. $58^{\circ} 55^{\prime} 25^{\prime \prime}$.
CCXXXI. Observed in the afternoon at Point Procidence. Lat. $58^{\circ} 58^{\prime}$; long. $112^{\circ} 10^{\prime}$.

$$
\begin{aligned}
& \text { Variation by collimator, } 311 \text { p.м. . . . } 30 \quad 3 \quad \text { é } \\
& \text { Dip, by Gambey No. } 1 \text {. . . . } 8146 \cdot 1
\end{aligned}
$$

CCXXXII. July 6.-I was at mid-day among the Gypsum Islands. Either from want of a landing-place or from the sun being clouded, an observation for latitude was not taken until 50 minutes past noon, and the result can only be regarded as an approximation; it was $59^{\circ} 14^{\prime} 51^{\prime \prime}$. It places the course of the stream here about ten miles more to the north than it is laid down in the maps.
CCXXXIII. Observed for time p.m. Lat. by account, $59^{\circ} 15^{\prime}$; long. 3-4 р.м., $112^{\circ} 44^{\prime} 5$.
CCXXXIV. July 7.-Observed in lat. by account, $58^{\circ} 58^{\prime}$; long. $112^{\circ} 56^{\prime} \cdot 1$.

CCXXXV. Observed at noon. Lat. $58^{\circ} 53^{\prime} 23^{\prime \prime}$.
CCXXXVI. July 8.-Observed. Lat. by account, $58^{\circ} 44^{\prime}$; long. at 7.22 а.м., $113^{\circ} 27^{\prime}$.

CCXXXYI b. Observed at noon. Lat. $58^{\circ} 38^{\prime}$.
CCXXXVII. July 9.-Observed on Poplar Island. Lat. by account, $58^{\circ} 39^{\prime}$; long. 8.4 А.м., $114^{\circ} 10^{\prime} \cdot 7$.

CCXXXVIII. Observed at noon. Lat. $58^{\circ} 35^{\prime} 34^{\prime \prime}$.
CCXXXIX. July 10.-Reached the Falls of Peace River, the
only portage on its lower course. Lat. by account, $58^{\circ} 24^{\prime} \cdot 2$; long. S. 13 а.м., $114^{\circ} 51^{\prime} \cdot 1$.

$$
\begin{aligned}
& \text { Variation by collimator, } 10.38 \text { a.M. . } \\
& \text { Dip, by Gambey No. } 1
\end{aligned}
$$

CCXL. Observed at noon, about five miles westward of the Falls. Lat. $58^{\circ} 22^{\prime} 11^{\prime \prime}$. (The Fall is 8 feet.)

CCNLI. July 11.-Observed at noon, nearly opposite Fort Vermilion. Lat. $58^{\circ} 23^{\prime} 19^{\prime \prime}$, and arrived soon afterwards at the Fort.
CCXLII. Fort Vermimon, or Fort Lefroy. Lat. observed July $12,58^{\circ} 24^{\prime} 28^{\prime \prime}$; long. $115^{\circ} 58^{\prime} \cdot 6$.

Horizontal force in absolute measure :-

	Currected T	m	x	\$	I.
Magnet 30	$\stackrel{8}{4} 90000$	0.4001	$2 \cdot 2443$	14.037	(155)
,, 31	$5 \cdot 1890$	0:35:2	$2 \cdot 2590$	$14 \cdot 129$	(1:5)
, 17	$5 \cdot 3 \pi / 1$	$0 \cdot 6678$	$2 \cdot 2412$	14.018	(1\%)
			$2 \cdot 2482$	14.061	(45)

The mean of the whole is 14.022 , equivalent to $1 \cdot 8526 .{ }^{1}$
CCXLIII. July 13.-Left Fort Vermilion in the forenoon. Observed at noon about ten miles to the westward. Lat. $58^{\circ} 21^{\prime} 58^{\prime \prime}$.

I encamped this night a little below the mouth of a small stream which flows into Peace River from the west, the name of which I did not ascertain.

CCNLIV. July 14.-Observed. Lat. by account, $58^{\circ} 14^{\prime} \cdot 2$; long. 7.50 A.м., $116^{\circ} 32^{\prime} \cdot 9$.

[^57]CCXLV. Observed at noon, about four miles above the Winter Portage road, and about two miles above a small stream, which flows in from the east. Lat. $58^{\circ} 5^{\prime} 51^{\prime \prime}$.
CCXLVI. July 15.-Observed on an island opposite Baril River, a stream which flows in from the east. Lat. by account, $57^{\circ} 57^{\prime}$; long. 7.41 а.м., $117^{\circ} 4^{\prime} \cdot 7$.
\[

$$
\begin{aligned}
& \text { Variation by collimitor, } 8.22 \text { А.м. . } \\
& \text { Dip, by Gambey No. } 1 \text {. } \quad . \quad . \quad . \quad . \quad \stackrel{\circ}{29} \quad 56 \mathrm{E} . \\
& \hline
\end{aligned}
$$
\]

CCXLVII. Observed at noon. Lat. $57^{\circ} 49^{\prime} 46^{\prime \prime}$.

Encamped about twelve miles above Iroquois River, and a little above Wolverine Point.
CCXLVIII. July 16.-Observed. Lat. by account, $57^{\circ} 39^{\prime}$; long. 7.51 a.m., $116^{\circ} 55^{\prime}$.
CCXLIX. Observed at noon. Lat. $57^{\circ} 32^{\prime} 28^{\prime \prime}$.
CCL. July 17.-Observed a.m. Lat. by account, $57^{\circ} 19^{\prime}$; long. 7.57 м.м., $117^{\circ} 1^{\prime} 7$.

CCLI. Observed at noon. Lat. $57^{\circ} 16^{\prime} 40^{\prime \prime}$.
CCLII. July 18.-Observed. Lat. by account, $57^{\circ} 4^{\prime}$; long. 7.52 а.м., $117^{\circ} 5^{\prime} 1$.

I have here noted that the formation was shale, visible about fifty feet above the river, the base being hidden by débris; above the shale was about thirty feet of compact gravel, containing much iron, and cemented into a conglomerate at the top. A bed of limestone one to two feet thick was in some places visible between the shale and the gravel.

I brought away a small quantity of fossil shells, which were identified by the late General Portlock, R.E., as Terebratula reticularis, or Delthyris reticularis, a Devonian and Upper Silurian fossil, of which I also brought specimens from Mackenzie's River.
CCLIII. Same day. Observed at noon. Lat. $56^{\circ} 58^{\prime} 37^{\prime \prime}$.
CCLIV. July 19.-Observed opposite the River Cadotte. Lat. loy account, $56^{\circ} 47^{\prime}$; long. 8.50 д.м., $117^{\circ} 1^{\prime} \cdot 7$.

Variation by collimator, 0.17 A.M. . . . $\quad 27$ í E.
Dip by Gambey No. 1 $79 \quad 20 \cdot 7$
CCLV. Observed at noon. Lat. $56^{\circ} 41^{\prime} 46^{\prime \prime}$.

I passed the spot known as the Palisades this day; a vertical cliff of sandstone imperfectly stratified towards the top, but very compact below, and rent with vertical fissures ; the base for a height of sixteen feet is hidden by debris, but it apparently overlies the shale.
CCLVI. July 20.-Observed lat. by account, $56^{\circ} 27^{\prime}$; long. 8.12 А.м., $117^{\circ} 2^{\prime} \cdot 7$.
CCLVII. Observed at noon. Lat. $56^{\circ} 19^{\prime} 52^{\prime \prime}$.

My encampment this night must have been near the Forlis at the mouth of Smoky River, which, however, was passed without observation.
CCLVIII. July 21.-Observed at noon. Lat. $55^{\circ} 57^{\prime} 32^{\prime \prime}$.
CCLIX. July 22.-Observed at noon. Lat. $55^{\circ} 52^{\prime} 51^{\prime \prime}$, and reached Fort Dunvegan before 4 p.n.
CCLX. Fort Dunvegan.

I am unable to find the observation upon which the lat., assigned in 1846 , is founded, and can only repeat it-riz., lat. $55^{\circ} 55^{\prime} 36^{\prime \prime}$; long. by chronometer, $118^{\circ} 28^{\prime} 31^{\prime \prime}$. By two sets of lunar distances moon from sun west of her, $118^{\circ} 40^{\prime} 45^{\prime \prime} .{ }^{1}$ The most recent maps published by authority differ much in the position they assign to this fort. In the only map extant in 1844, it was placed by Arrowsmith in $117^{\circ} 30^{\prime}$; in the map attaclued to the Geological Survey of $1875-6$ it is placed in $118^{\circ} 52^{\prime}$; in the map of the Canada Pacific Railway, accompanying the Progress Report of 1876 , in $118^{\circ} 50^{\prime}$; in the map of Manitoba, dated March 1880 , again in $117^{\circ} 30^{\prime}$; lastly, in a map dated 1882 , in $118^{\circ} 26^{\prime}$. My chronometer longitude is dependent upon the longitude assigned to the Fort on Lesser Slave Lake, namely, 116°, and Fort Chipewyan $111^{\circ} 18^{\prime} 42^{\prime \prime}$; but the Innars agree pretty woll, and confirm it

[^58]as against the more easterly places assigned, and until corrected by better observation I adopt $118^{\circ} 35^{\prime}$.

Horizontal force in absolute measure :-

Magnet No. 30		Corrected \mathbf{T}	m	x	ϕ	W.
		${ }_{4}^{\text {s }} 4.4557$	0.3093	$2 \cdot 7224$	13.979	(1\%)
"	, 31	$4 \cdot 7671$	$0 \cdot 3528$	2.7254	13.994	(1.5)
"	, 17	$4 \cdot 8589$	$0 \cdot 6727$	$2 \cdot 7252$	$13 \cdot 993$	(1.5)
				$\overline{2 \cdot 7243}$	$\widetilde{13.989}$	(0.45)

The mean of the whole is 14.000 , in relative measure $1.8498 .{ }^{1}$
I observed the Göttingen Term day of July 23-4 at this fort. It presented no feature of interest.

July 26.-Accompanied by Mr. Dyke Bouchier, a young clerk of the Hudson's Bay Company with whom I had passed the winter at Lake Athabasca, I left Fort Dunvegan this day for Lesser Slave Lake, by land. The instruments were carried by pack-horses, and the loads requiring to be carefully made up, they were not unpacked at ordinary halts. The weather was most unfavourable for observations, and I am unable in consequence to lay down my track, but a few points are determined. The distance is about 100 miles by the 'Kristenaux War Path' of old maps, which passes south of the great morasses round the Stinking Lakes.
CCLXI. July 27.-Observed for longitude at 8.44 a.m. Having failed of an observation for latitude at noon, the result is only approximative. Lat. assumed $55^{\circ} 50^{\prime}$; long. $118^{\circ} 33^{\prime} \cdot 5$.
CCLXII. July 28.-Observed for longitude where the trail passes Burnt River $117^{\circ} 39^{\prime} 48^{\prime \prime}$; lat. by account $55^{\circ} 51^{\prime}$.

[^59]CCLXIII. Observed at noon at the River de Prairie, $55^{\circ} 49^{\prime} 3^{\prime \prime}$.

July 29.-Crossed Smoky River, or River de Boucane.
July 30--Observed the temperature of boiling water to obtain the elevation of the region about fifteen miles west of it. Crossed the Rivière qui barre (le chemin). ${ }^{1}$

July 31.-Sent on the baggage and visited 'The Smokes' or sulphur springs on Smoky River.

August 1.-Guided by some Indians and accompanied by Mr. Bouchier, I visited the Crow Lakes and the Stinking Lake, the water of which was found so saturated with sulphuretted hydrogen that even when boiled it was unfit for making tea. We got back to camp at a very late hour.

August 2.-Arrived at the Fort on Lesser Slare Lake unexpectedly, no notification of my risit haring reached the officer in charge.
CCLXIV. August 3.-At the Fort Lesser Slate Lake. Lat. by observation at noon, 2 nd, $55^{\circ} 32^{\prime} 39^{\prime \prime}$; 4th, $55^{\circ} 32^{\prime} 41^{\prime \prime}$.

Longitude by lunar distances.

Mean . $\begin{array}{llll}115 & 50 & 57 & \mathrm{~W} . \text { or } 7^{\mathrm{h}} 44^{\mathrm{m}} \text {. } \text {. } \text {. }\end{array}$
The result was formerly published as $115^{\circ} 53^{\prime} 30^{\prime \prime}$. I am indeleted to Mr. J. Coles of the Royal Geographical Society for going over and recalculating the observations.

Horizontal force in absolute measure August 5, by vibration only.

[^60]| | Corrected T | m | x | 中 | w. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Magnet No. 30 | 4.4449 | $0 \cdot 3985$ | $2 \cdot 7412$ | 13.929 | (1.0) |
| " 81 | $4 \cdot 7706$ | $0 \cdot 3517$ | $2 \cdot 7302$ | 13.873 | (1.0) |
| , 17 | 4.8741 | $0 \cdot 6700$ | $2 \cdot 7180$ | $13 \cdot 814$ | (1.0) |
| | | | $2 \cdot 7298$ | $13 \cdot 872$ | (0.30) |

I fortunately found a canoe at the fort and re-embarked on the 5th.
CCLXV. Encamped on Cranberry Point, a spot on the north side of the lake which I cannot identify on the maps. Lat. by Polaris, $55^{\circ} 29^{\prime} 32^{\prime \prime}$; long. by observation of a Aquilæ, $115^{\circ} 9^{\prime} 45^{\prime \prime}$.
CCLXVI. August 6.-Crossed the lake and observed at Swan Point, or Point Dejala, on the south side. The passage was made memorable by our shooting a moose deer, which had been driven by some Indians into the water. Lat. $55^{\circ} 26^{\prime}$; long., 8.27 a.м., $115^{\circ} 3^{\prime} \cdot 1$.

Varia	${ }_{26}{ }^{\circ}$
Dip, Gambey No. 1	

CCLXVII. Observed on the same side at noon six or seven miles further west. Lat. $55^{\circ} 25^{\prime} 19^{\prime \prime}$.
CCLXVIII. August 7.-Observed at noon on Lesser Slave River, the stream which empties the lake. Lat. $55^{\circ} 15^{\prime} 7^{\prime \prime}$.
CCLXIX. Observed again at the Forks of the Athabasca, where the same stream falls into the Elk, or Athabasea River. Lat. by account, $55^{\circ} 13^{\prime}$; long., 3.57 р.м., $113^{\circ} 53^{\prime} 15^{\prime \prime}$.

Variation by collimator, 4.44 P.M. . . . $20 ̊ 28$ E.
Dip, Gambey No. 1. 78 55.2
CCLXX. August 8.-Observed for longitude on the Elk, or Athabasca River. Lat. by account, $55^{\circ} 3^{\prime}$; long., 7.42 A.m., $114^{\circ} 0^{\prime} \cdot 2$.
CCLXXI. Observed at noon. Lat. $54^{\circ} 56^{\prime} 18^{\prime \prime}$.
CCLXXII. Encamped opposite the Pembina River. Lat. by Polaris, $54^{\circ} 48^{\prime} 31^{\prime \prime}$.
CCLXXIII. August 9.-Observed again on the Athabasca River. Lat. by account, $54^{\circ} 43^{\prime}$; long., 8.16 p.м., $114^{\circ} 0^{\prime} \cdot 2$.

$$
\begin{aligned}
& \text { Variation by collimator, } 9.10 \text { A.м. } \\
& \text { Dip, Gambey No. } 1 .
\end{aligned} \quad . \quad . \quad \stackrel{\circ}{26} \quad \stackrel{1}{29} \cdot 1 \mathrm{E} .
$$

CCLXXIV. Observed at noon. Lat. $54^{\circ} 33^{\prime} 27^{\prime \prime}$.
CCLXXV. Observed at encampment. Lat. by Polaris, $54^{\circ} 25^{\prime} \cdot 5$; long. by Arcturus, $114^{\circ} 11^{\prime}$.
CCLXXVI. August 10.-Observed at noon. Lat. $54^{\circ} 20^{\prime} 19^{\prime \prime}$, and reached Fort Assiniboine soon afterwards.
CCLXXVII. August 11.-At Fort Assiniboine. Lat. by observation at noon, $54^{\circ} 21^{\prime} 42^{\prime \prime}$; long. $114^{\circ} 28^{\prime} 24^{\prime \prime}$. By Polaris, $54^{\circ} 21^{\prime} 7^{\prime \prime}$.

August 12.-Accompanied by a Wesleyan missionary who arailed himself of the escort to Edmonton, I crossed the Elk River in the canoe, horses being swum over, and started for that post.
CCLXXVIII. August 13.-Encamped at Paddle River. Lat. by Polaris, $54^{\circ} 5^{\prime} 44^{\prime \prime}$; long. by Arcturus, $114^{\circ} 3^{\prime} \cdot 6$.
CCLXXIX. August 14.-Observed at the crossing of the Pemline Ricer, which we swam, as we did some smaller streams, but carried over the baggage on a raft. Lat. by account, $54^{\circ} 3^{\prime} \cdot 2$; long. $114^{\circ} 0^{\prime} \cdot 2$.

Variation by collimator, 9.42 A.M. . . . $22 \quad 23$ E.
Dip by Gambey No. 1 7754
August 15.-No observations recorded. It rained nearly all the time of this journey, so that opportunity of observations was tery much wanting. ${ }^{1}$

August 16.-I reached Edmonton on the Saskatcherran, in the forenoon.

[^61]CCLXXX. Edmonton.-This station is about nineteen miles N. by W. from the intended station of the same name on the Canada Pacific Railway. Its geographical position was fixed in 1879 with great precision by Mr. W. F. King, the surveyor in charge of the astronomical section of the standard survey of the north-west territory. Mr. King assigns lat. $53^{\circ} 31^{\prime} 54^{\prime \prime}$; long. $113^{\circ} 30^{\prime} 19^{\prime \prime}$, or $7^{\mathrm{h}} 34^{\mathrm{m}} 1^{\mathrm{s} .} 3 \mathrm{~W}$.

I had three observations of latitude :-

The second of these was interrupted for 25^{m} at the critical time of noon by the sun being too indistinct for observation. Giving it half weight, the resulting latitude for Edmonton is $53^{\circ} 31^{\prime} 51^{\prime \prime}$, or only $3^{\prime \prime}$ less than the recent determination.

The longitude given in 1846 was $112^{\circ} 52^{\prime}$, which proves to be considerably in error. It was based entirely on the longitude of Carlton House determined by Franklin's expedition, for my chronometer series from Athabasca was, unfortumately, broken by the stoppage of my only chronometer on August 15. Carlton House (see station CCLXXXIX) is now placed $19^{\prime} 20^{\prime \prime}$, or $1^{\mathrm{m}} 17^{\mathrm{s} \cdot} 3$, of time west of Franklin's position, and by the error of rate involved in the latter I was led to place Edmonton also far to the east of its true position. But the stations between Edmonton and Athabasea appear to be rigltly placed. I find Paddle River at the crossing (CCLXXVIII) $33^{\prime} 15^{\prime \prime}$ west of Edmonton, and this must be very near the truth. It is to be hoped, however, that the survey will ere long be extended to Lesser Slave Lake and Peace River. ${ }^{1}$

[^62]| Total Force | | Relative | Absolute | w. |
| :---: | :---: | :---: | :---: | :---: |
| Fox A . | . . | 1.8558 | $14 \cdot 046$ | (5.0) |
| , C | . ${ }^{\text {c }}$ | $1 \cdot 8391$ Í | 13.919 | (5.0) |
| | | 1.8474^{1} | 13.482 | (1.0) |

Horizontal force in absolute measure :-

	Corrected T	m	x	¢	T.
Magnet No. 30	4.2948	0.3978	2:9411	14.040	(1\%)
" , 31	4.5035	$0 \cdot 3507$	2.9527	14.095	(15)
" " 17	$4 \cdot 6576$	0.6702	$2 \cdot 9383$	14.027	(1.5)
			2.9440	14.054	(0.45)

The mean of the whole is $14 \cdot 000$, equivalent to $1 \cdot 8498$ on the relative scale.

I have pointed out on p. 35 that the force formerly assigned to Edmonton, viz., $1 \cdot 809$, or $13 \cdot 69$, was incorrect, the absolute determinations having been overlooked by General Sabine. This station, being geographically the nearest to the district surveyed magnetically by Captain Haig in British Columbia, in 1858-60, and not more than 220 miles distant from the line of $13 \cdot 50$, as laid down by lim, is within the range of direct comparison with his independent results. We find that, taking the increase of force to be at the rate of 0.10 for $77 \cdot 66$ miles measured on the normal to that line (Haig), the force at Edmonton would have been $13 \cdot 80$ in 1860 ; but it was greater in 1844 than it was in 1860, as we may infer from the fact of its laving decreased in that interval at Toronto, which is on nearly the same isodynamic line. Assuming the rate of secular change to have been alike in both places, it would have been $13 \cdot 897$ at Edmonton in 1844 by Captain Haig's observations, and a slightly more rapid rate of secular change would produce a close agreement with the above result of 14.000 .

I left Edmonton in a boat provided by Mr. Rowand, the chief factor in charge, with the intention, by his advice, of dropping down the river by night, and thus cscape the observation of the Blackfeet, and other warlike tribes of the plains who were at that time ranging the country. We were provided with a fer muskets for defence if necessary.
CCLXXXI. August 20.-I landed in a secluded spot on the north or left bank of the river, for breakfast, and observed. The locality must hare been near the present Victoria Mission Station. Lat. by account, $54^{\circ} 4^{\prime} \cdot 5$; long. $112^{\circ} 19^{\prime} 5$.

[^63]\[

$$
\begin{aligned}
& \text { Variation by collimator, } 9.20 \text { А.м . . . }{ }_{2} 33^{5} \mathrm{E} \text {. } \\
& " \quad " \quad 9.33, \quad . \quad \frac{2456}{24-25} \mathrm{E} .{ }^{1} \\
& \text { Dip by Gambey } 78 \quad 52
\end{aligned}
$$
\]

Horizontal force in absolute measure by vibration only :-

Nagnet	No. 30	Corrected T	m	X	¢	w.
		4.3747	$0 \cdot 3979$	$2 \cdot 8341$	13.729	(1.0)
"	, 31	4.6908	0.3515	$2 \cdot 8255$	$13 \cdot 687$	(1.0)
"	, 17	4.7792	06700	$2 \cdot 8.76$	$13 \cdot 698$	(1.0)
				2.8291	13.705	(0.3)

The equivalent in relative force is $1 \cdot 8107$.
CCLXXXII. Observed at noon, about six miles lower down. $L^{\text {at. }} 54^{\circ} 3^{\prime} 30^{\prime \prime}$.
CCLXXXIII. August 21.--Landed again on the north side of the river, a little beyond Moose Hill Creek. Haring failed to get an observation of the sun at noon I take the lat. from the latest map, $53^{\circ} 50^{\prime}$; long. $110^{\circ} 59^{\prime}$.

> | Variation by collimator, $8^{\mathrm{h}} 8_{\mathrm{m}}^{\mathrm{m}}$ A.M. |
| :--- |
| Dip, by Gambey No.. |
| . |
| . |

Horizontal force in absolute measure :-

Magnet No. 30		Corrected T	m	X	¢	W.
		$\stackrel{8}{4} 4348$	$0 \cdot 3979$	2.7.579	$13 \cdot 003$	$(1 \cdot 0)$
"	, 31	47706	0.3515	2.7318	13.72	(1.0)
"	, 17	$4 \cdot 8472$	$0 \cdot 6700$	$2 \cdot 7495$	13.861	(1.0)
				$\overline{2 \cdot 7464}$	$\overline{13.812}$	(0.3)

The equivalent in total force is 1.8249 .
I reached Fort Pitt the same evening.
CCLXXXIV. August 22.—At Fort Pitt.

Observed lat. by Polaris, $53^{\circ} 35^{\prime} 2^{\prime \prime}$; long. $109^{\circ} 47^{\prime} 10^{\prime \prime}$. Mr. F. W, King has found, for 'a station on the river bank near Fort Pitt,' $53^{\circ} 34^{\prime} 5^{\prime \prime}$; long. $109^{\circ} 47^{\prime} 10^{\prime \prime}$.

[^64]Horizontal force in absolute measure by vibrations only :-

Magnet No. 30		Corrected T	m	x	ϕ	W.
		$4 \cdot 4167$	0.3979	$2 \cdot 7810$	$14 \cdot 169$	(1.0)
		4.7334	$0 \cdot 3515$	$2 \cdot 7749$	$14 \cdot 141$	(1.0)
"	, 17	$4 \cdot 8223$	0.6700	2.7773	$14 \cdot 153$	(1.0)
				$2 \cdot 7777$	$14 \cdot 154$	(0.3)

This ralue is largely in excess of what is due to the position, and, like the next two stations, indicates a great dislocation of the magnetic lines in this region. The equivalent relative force is $1 \cdot 8700$.

The lawless state of the native Indian population of the great plains, even within British territory, at this time, was well exemplified by an incident, of which I saw the effects at Fort Pitt. The Blackfeet were at war with the Crees, and had recently managed to interrupt a small and harmless party of the latter, who were coming to the Fort to trade. They attacked them close to the Fort, and killed two or three, when the people of the Fort made a sally and drove them off. Among those saved was a squaw, who had been shot through the upper part of the body; the wounds were nearly healed, but the poor woman thought that so great a medicine-man could do something for her, and could not be contented until I had covered both wounds with diachylon plaster-a safe application.
CCLXXXV. August 23.-The place of observation this day was in the neighbourhood of what are now marked on the maps as Willow Hills. It would appear from the disturbance of the magnetic elements to be of different geological formation from the region recently traversed. Lat. by an observation 39^{m} late, reduced to the meridian, $53^{\circ} 0^{\prime} 7^{\prime \prime}$; long. $108^{\circ} 30^{\prime} 3^{\prime \prime}$. The latitude formerly giren was $53^{\circ} 7^{\prime}$ by mistake.

Variation, 2.40 p.м.	.	.	.	28	$24 \cdot 1 \mathrm{E}$.
Dip, Gambey No. 1, p.m.	.	.	.	78	$28 \cdot 1$

Horizontal force in absolute measure :-

	Corrected T	m	X	¢	W.
Magnet 30	${ }_{4}^{\text {s. }} 3646$	0.3978	$2 \cdot 8480$	14.246	(1.0)
, 31	$4 \cdot 6798$	$0 \cdot 3515$	$2 \cdot 8388$	14.201	(1.0)
, 17	$4 \cdot 7562$	$0 \cdot 6700$	2.4551	14-282	(1.0)
			$2 \cdot 8473$	$14 \cdot 243$	(03)

the mean. The instrument was adjusted as far as I could effect it, but ' remained in indifferent order, the axle being slightly bent, and one, if not two, of the verniers stamding off the limb.' (Note in Observation Book.)

The equivalent in relative force is $1 \cdot 8819$, indicating, like the last station, considerable local effect.
CCLXXXVI. Encamped about seven miles N.W. by W. from Battle River. Lat. by Polaris, $52^{\circ} 45^{\prime} 22^{\prime \prime}$; long. $108^{\circ} 12^{\prime} 0^{\prime \prime}$. The distance and bearing given would place Battleford, at the mouth of the river, in about lat. $52^{\circ} 42^{\prime} 30^{\prime \prime}$; long. $108^{\circ} 3^{\prime} 48^{\prime \prime}$. Mr. W. F. King has found for a hill $10^{\prime \prime}$ south of Battleford and south of Battle River, lat. $52^{\circ} 42^{\prime} 49^{\prime \prime}$; long. $108^{\circ} 16^{\prime} 59^{\prime \prime}$, but it is not stated how this spot is related to the mouth of the river.
CCLXXXVII. August 24.-Observed at noon about the elbow. Lat. by a late observation, reduced to the meridian, $52^{\circ} 21^{\prime} 24^{\prime \prime}$; long., by account, $107^{\circ} 23^{\prime}$.

$$
\begin{array}{lcccccc}
\text { Variation by collimator, } 2.30 \text { р.м. } & . & . & 25 & 21 \cdot 4 \mathrm{E} . \\
\text { Dip, Gambey No. } 1 & \cdot & . & . & . & 78 & 16 \cdot 6
\end{array}
$$

Horizontal force in absolute measure :-

	Corrected \mathbf{T}	m	x	¢	w.
Magnet 30	$4 \cdot 3520$	0.3978	$2 \cdot 8637$	14.062	(1.0)
, 31	$4 \cdot 6534$	0.3515	2.8711	$14 \cdot 130$	(1.0)
\% 17	4.7525	$0 \cdot 6700$	2.8595	14.073	(1.0)
			$2 \cdot 8648$	14.088	(0.3)

The equivalent in relative force is 1.8615 .
This station, like the two preceding ones, is evidently affected by local causes.
CCLXXXVIII. Observed for time about six miles lower down, as I imagine near Eagle Creek of modern maps. Lat. by account, $52^{\circ} 21^{\prime} \cdot 4$; long. $107^{\circ} 23^{\prime} 4^{\prime \prime}$.

August 25.-Reached Carlton House.
CCLXXXIX. Carlton House.-A part of Franklin's party wintered here in 1820, and I adopted the latitude and longitude given by him. Mr. F. W. King has since (1879) fixed a station near, but apparently two miles to the north of the Fort, at the steamboat landing on the river.

The river runs a little cast of north here. Tn the absence of
identification of the precise spot I adhere to Franklin's latitude, but adopt Mr. King's longitude, which is followed on the latest Dominion maps. ${ }^{1}$

Lieutenant Blakiston, R.A., passed the winter of 1857-8 at this Fort, and made hourly observations of the declination, which were discussed at great length by General Sabine in comnection with other stations in $1860 ;{ }^{2}$ but with entire absence of any allusion to the observations of the present writer at Lake Athabasea in 1843-4, by which the same periodical laws were established and previously published.

Horizontal force in absolute measure:-

	Correeted T	m	x	ϕ	w.
Magnet 30	${ }_{4}^{8} 4.4542$	$0 \cdot 3965$	2.7432	19.773	(1.5)
31	4.7654	0-3499	$2 \cdot 7499$	$13 \cdot 807$	(1\%)
\% 17	4.8565	$0 \cdot 6700$	2.7438	18.749	(0.75)
			$2 \cdot 7438$	13:782	(0.37)

The equivalent in relative force is $1 \cdot 8209$.
The observations with Bars 30 and 31 being complete, are allowed double weight. The ratio $\frac{m}{\bar{\lambda}}$ was not observed for Bar 17.

One of the few adrentures that befell me in a journey which was especially laid out for scientific work, and almost excluded sport or excitement of any kind, occurred on the evening of learing Carlton House, and the country being now peaceably settled and occupied by an industrious agricultural population. I extract from a letter addressed to Lieut. Riddell the account I gave him of it shortly afterwards :-

I had a very pleasant royage down the Saskatchewan, and met with an adventure which gave me some amusement at the time. The Plain Indians are in a state of warfare, and there is a certain degree of danger in a solitary boat or canoe passing through their country. The travelling war parties are no respecters of persons, and would scalp the illustrious Gauss himself as soon as anybody. By way of defence we carried some

[^65]old muskets, but we arrived at Fort Carlton without danger. We saw a few buffalo and deer, and plenty of wolves, but not one Indian, for they were all away in another direction. A few miles below Carlton the thick woods commence, where danger from the Indians of the plain is usually considered to be at an end. We left our muskets, therefore, with the trader, and went on unarmed excepting the guns carried by myself and the guide. That evening, an hour or so after sunset, as we were pulling quietly down stream, which is there very rapid, we were hailed out of the dusk of the opposite bank, in the Assiniboine or Blackfoot language, by some party which had encamped there, without a fire; this is always a suspicious circumstance with Indians. We made no reply, but kept on, inclining a little to the other shore. Three or four miles lower down, it being then quite dark, we halted to cook our supper. The spot was a thicket on the top of a high bank, as I supposed, an island. While the supper was cooking-it was a beautiful kettle of buffalo humps and tongues-I heard a faint singing noise in the distance, and was wondering what it could be, when it seemed to become louder and nearer, and caught the ears of the men, who, being engaged, had not heard it so soon. Instantly there was a cry-'Les Assiniboines!' 'Les Gros Ventres!' 'Les Pieds-noir!' 'Embarquez, monsieur, embarquez!' and, seizing their kettles, they tumbled down the bank with incredible expedition. I, of course, had to follow them after securing my own, and we pushed off. All this made some noise, and when we reached the middle of the stream and lay on our oars to listen, there was a dead silence for a moment, then a loud outcry as of wolves and dogs and owls hooting. This is so common a stratagem of the Indians, I felt convinced that they proceeded from a party of them. Singularly enough, not far above, without seeing or hearing anything, we had all perceived in the pure night air the smell which proceeds from a large assemblage of horses ; but it was too dark to distinguish any objects on the bank. It is rather umusual for the Indians to range so low, but some Assiniboines arrived at Carlton while I was there, and a war party of fifty Blackfeet had left it only a fortnight previously.

We never encamped between Edmonton and Cumberland, but after cooking supper re-embarked and drifted all night with the stream, keeping one man to look ont and steer the boat. It was generally beantiful weather, and I enjoyed no part of the voyage more-a boat being far more comfortable than a canoe.
CCXC. August 27.-Observed about two and a half miles below the Forks. Lat. by account, $53^{\circ} 13^{\prime}$; long. $104^{\circ} 51^{\prime} 34^{\prime \prime}$. This station is near Fort à la Corne of the maps, which cannot, I think, have been occupied as a trading post at the time, or I should have halted there. Professor H. Y. Hind inserts variation, $22^{\circ} 30^{\prime} \mathrm{E}$. for this fort in his Ronte Map of 1859.

THE SASKATCHEWAN.
Horizontal force in absolute measure :-

	rrected \mathbf{T}	m	x	¢	W.
Magnet 30	$4 \cdot 5560$	$0 \cdot 3977$	$2 \cdot 6147$	13.928	(1.0)
, 31	$4 \cdot 8791$	$0 \cdot 3575$	$2 \cdot 60.56$	$13 \cdot 889$	(1.0)
" 17	$4 \cdot 9668$	$0 \cdot 6700$	$2 \cdot 6180$	13.95 .5	(1.0)
	an		$2 \cdot 6128$	13.924	(0.3)

The equivalent in relative force is 1.8397 .
August 28.-No observation.
August 29, 1844.-I arrived again at Cumberland House, Station CLXXXIII, which see.

SECTION VI.

FROM FORT GOOD HOPE, ON MACKENZIE'S RIVER, TO FORT CHIPEWYAN, ON LAKE ATHABASCA.

About 900 miles.
Preliminary Olservations.-My observations in this remote region are few and far between, the conditions of travelling over the greater part of it haring been incompatible with field work. Leaving Lake Athabasca on March 4, 1844, I travelled on snow shoes to Fort Resolution, on Great Slave Lake, and thence to Fort Simpson, a distance altogether of 460 miles, the instruments being packed on dog sledges. The whole journey occupied nineteen days. It is needless to say that long observations in the open air are almost a physical impossibility, with the thermometer far below zero. We had mercury frozen at daybreak on March 25 . Therm. $-41^{\circ} \mathrm{F}$. At the same hour, two days previously, it stood at $+33^{\circ}$, a range of 74°. I reached Fort Simpson on March 26, and remained there engaged in hourly observations until May 25, when the ice on Mackenzie's Piver broke up, and the boats started almost instantly for Fort Good Hope. The descent of the Mackenzie is made rery rapidly, owing to the strengtl of the current, and the officer in charge, the late Mr. John Maclean, being the same gentleman with whom I had left Montreal the previous year, made only one short halt, which was at Fort Norman. Returning again from Fort Good Hope, we were favoured by a strong northerly wind (accompanied by snow), and again ran the whole distance of 420 miles, with only one halt, which was also at Fort Norman, making both journeys in an unusually short time. I accompanied the same boats, after a short delay, always pushing on with the utmost expedition, on their way to the Great Portage (Station CCXYII), as far as Fort Resolution. Here I obtained a canoe and left them, and from hence to Lake Athabasca, about 240 miles, obserrations are more numerous.

It is convenient to take the stations in the order of time. I have been unable to find the original entries for latitude and longitude, which are therefore given without revision, as published in 1846.
CCXCI. May 27.-Observed latitude on Mackenzie's River, $64^{\circ} 7^{\prime} 40^{\prime \prime}$.
CCXCII. May 29.-Observed latitude at the Rapide sans Sault, $65^{\circ} 48^{\prime}$.
CCXCIII. May 30, 184.-Fort Good Hope, Mackenzie's River. Lat. by T. Simpson, $1837,66^{\circ} 16^{\prime}$; long. $128^{\circ} 31^{\prime}$.

This post was in Franklin's time about 120 miles lower down, in lat. $67^{\circ} 28^{\prime}$. It was subsequently mored to Upper Manitou Island, and being swept away from that spot by a flood in 1836, was rebuilt on the mainland opposite that island, where Simpson found it. It was at the same place in 1844 . The weather was cloudy, and I was unable to make any observation in my brief visit, excepting one imperfect glimpse of the sun, whence the approximate variation at 8.24 A.n., $42^{\circ} 26^{\prime}$ E.

By the general testimony of all the recorded observations towards the mouth of the Mackenzie this value is about 2° too Iow.

$\begin{gathered} \text { Dip, } \mathrm{Ma} \\ , \end{gathered}$		am			$\stackrel{\circ}{8}$	$5 \cdot 5$
	"	"	2		82	$56 \cdot 1$
						55.9

Horizontal force in absolute measure :-

Magnet 30 (1)	Corrected T	m	x	\$	W.
		$0 \cdot 4090$	$1 \cdot 6729$	13.505	(0.5)
" , (2)	$5 \cdot 6013$	$0 \cdot 4101$	16751	13.614	(1:5)
" 31 (1)	7×323 g	0.3641	1.680.5	$13 \cdot 656$	(1:5)
" , (2)	5.9763	$0 \cdot 3641$	1.6805	$13 \cdot 655$	(1-5)
17 ,	6.1109	0.675	1.7103	13889	$(1 \cdot 0)$
	Mean		1.6918	13.681	(0.60)

Equivalent in relative force to 1.8072 .
This observation was made about midnight, the twilight, although the sky was completely clouded over, being nearly as light as day. There was no appearance of disturbance. The ribration of No. 30 was imperfect, owing to the suspension silk breaking; the ralues
given the first line are deduced from the angles of deflection, and the result weighted accordingly.

About this time it occurred to me that the mean angle of deflection of the suspended magnet in Lloyd's induction magnetometer, when it is acted upon by the magnetism induced in a soft iron bar at a constant distance, must vary as the inducing force, or as some function of the total force at the spot. In reality, as the force which resists deflection, viz. the horizontal component, is also a function of the total force at the spot, the observation taken alone does not contain the elements of any solution of the question proposed, which was to determine by a comparison of the angles of deflection the relative force at any two places of observation, nor does the vertical component itself differ much in amount within the limits of the present survey, although the angles of deflection range from 24° to $58^{\circ} 35^{\prime}$. Since, however, the observation is one which had never before been made, and the experience may have some useful application, I lave collected the results in the introduction.

At this station the suspended magnet of the induction inclinometer was deflected by the induced magnetism of the soft iron bar, $58^{\circ} 35^{\prime}$.

CCXCIV. May 28 and Jane 2.-Fort Norman.

This fort was in 1844 on the west side of the river. It has, I understand, been since moved to the east side. Lat. by Franklin, $64^{\circ} 40^{\prime} 38^{\prime \prime}$; long. $124^{\circ} 44^{\prime} 47^{\prime \prime} \mathrm{W}$, Table V, but given in the text (p. 18) as $124^{\circ} 53^{\prime} 22^{\prime \prime}$. The former is probably his final value.

$$
\text { Dip, May 28, Gambey No. } 1 \text {. . . . } 82 \quad 34 \cdot 3
$$

I landed at this establishment in descending the river and again on my return, on both occasions for a few hours ouly, and under circumstances of weather unfarourable to observation. There was only time on the first occasion to observe the angles of deflection with Magnet 30, giving the ratio $\frac{m}{\bar{X}}$. The vibration of the same Bar, to give the product $m X$, had to be postponed until my return on June 2 ; the data are, therefore, more imperfect at this station than at the others. I subjoin the independent ralues of $\mathrm{X}:-$

May		Corrected T			m	x	ϕ	$\begin{gathered} \mathrm{W} \\ (0.75) \end{gathered}$
		Magn		-	$0 \cdot 4091$	17525	13.55 .5	
June	2.	"	30	$5 \cdot 4832$	0•4091	1.7483	13520	(0.75)
"	,	"	31	5.8403	$0 \cdot 3616$	1.7676	$13 \cdot 672$	(1:5)
"	"	"	17	5.9717	$0 \% 678$	$1 \cdot 7902$	$13 \cdot 84$	(0\%75)
						17652	$13 \cdot 653$	(0.37)

[^66]Taking separately all the data for a comparison of this station with Fort Simpson, we have the ratio of the horizontal component as follows :-

Taking the absolute horizontal force at Fort Simpson as 1.9533 , this gives for Fort Norman 1•7608, differing little from the absolute value (1.7652) determined above.

The suspended magnet of the induction inclinometer was deflected by the induced magnetism of the soft iron bar, $55^{\circ} 49^{\prime}$.

I had a rare opportunity in this neighbourhood of ascertaining the depth of the permanently frozen soil ; a large landslip had very recently occurred near the Gros Cap, in or near lat. $64^{\circ} 20^{\prime}$, where the cliff was 180 feet high. I estimated the area which had fallen at five acres. It left a clear, sharply-cut perpendicular section of alluvial soil, which was still in a frozen state to a deptli of forty-five feet, the limit being very well shown by a change of colour, and ly the water trickling out along the line of junction. The summer thaw does not penetrate beyond one foot in sheltered places, as in the woods, and two feet in cultivated ground, of which there was a little round the fort, producing barley and potatoes. The contrast this affords to the depth of at least 382 feet, said to have been ascertained near Yakutsk, in Siberia, is very remarkable-the latter place being 2° more distant from the pole. Erman, indeed, calculates the total thickness of permanently frozen soil in that locality to be as much as $630 \cdot$ feet. ${ }^{1}$
CCXCV. Fort Simpson.

Lat. observed, $61^{\circ} 51^{\prime} 42^{\prime \prime}$; by T. Simpson, 1837, $61^{\circ} 51^{\prime} 25^{\prime \prime}$; long. by Simpson from a number of lunar distances, $121^{\circ} 25^{\prime} 15^{\prime \prime}=$ $8^{\mathrm{h}} 5^{\mathrm{m}} 41^{\mathrm{s}} \mathrm{W}$., which is about $8^{\prime} \mathrm{E}$. of the position assigned by Franklin.

[^67]| Dip, March | | 28, 4-5 Р м., | | ambey | No. | | | 81 | 53.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | , May | 10, 11 | A.m., | , | " | | | 81 | $41.5{ }^{1}$ |
| | " | , 12 | " | " | " | 2 | | 81 | 50.7 |
| | | | Mean | - | | | | 81 | $52 \cdot 2$ |

Absolute horizontal force :-

May 2, No. 30	rrected T	m	X	\$	\%.
	6.3133 \%	0.4115	1.9365	$13.693{ }^{2}$	(2.0)
" " "	5.1393	$0 \cdot 4165$	$1 \cdot 9612$	13.868^{2}	(2.0)
, 31	6.6867 g	$0 \cdot 3679$	1.9456	13.758^{2}	(2.0)
",	$5 \cdot 4691$	$0 \cdot 3721$	1.9664	13.905^{2}	(2.0)
" $\quad 17$	$5 \cdot 6751$	0.6858	1.9592	18.854	(1.0)
			1.9532	$13 \cdot 811$	(0.9)
June 12, No. 30	$5 \cdot 23.3$	0.4019	1.9545	13.821	(15)
", " 31	5.5993	$0 \cdot 3587$	1.9428	$13 \cdot 738$	(1.5)
, 17	$5 \cdot 7305$	$0 \cdot 6738$	1.9556	$13 \cdot 822$	(1.0)
" , 20	$4 \cdot 6155$	$0 \cdot 1655$	1.9716	13.938	(1.0)
" , 23	5:5003	$0 \cdot 2003$	1.9475	$13 \cdot 771$	(1.0)
			1.0534	13.803	(0.6)

The mean of the whole is $13 \cdot 808$, equivalent to 1.8244 .
I left Fort Simpson on June 15, 1844.
CCXCVI. June 16.-Observed at noon on the river below an old fort. Lat. $61^{\circ} 29^{\prime} 5$. The Mackenzie is here flowing nearly due west. Long. from Franklin's map about $120^{\circ} 20^{\prime}$.
CCXCVII. June 17.-Observed at Burnt Point, an angle in the river west of the Yellow Knife River. Lat. by account, $61^{\circ} 10^{\prime}$; long. $119^{\circ} 9^{\prime}$.

$$
\text { Variation by collimator, } 9.20 \text { А.M. . . . } 36 \text { é } 4 \text { E. }
$$

CCXCVIII. Observed at noon at Yellow Knife River. Lat. $61^{\circ} 12^{\prime} \cdot 3$.
CCXCIX. June 18.-Observed at Sandy Point, a promontory of Little Lake, which is merely an expansion of the river. Lat. by account, $61^{\circ} 20^{\prime}$; long. 118°.

$$
\text { Vayiation, } 9.58 \text { д.м. } 38 \text { E. }
$$

CCC. Observed at noon on Little Lake. Lat. $61^{\circ} 25^{\prime} \cdot 7$.

[^68]CCCI. June 19.-Observed A.m., in lat. by account, $61^{\circ} 25^{\prime}$; long. $117^{\circ} 31^{\prime}$.
$$
\text { Variation by collimator, } 9.17 \text { А.м. . . . } 36 \quad \frac{0}{7} \mathrm{E} .
$$
CCCII. Observed at noon. Lat. $61^{\circ} 19^{\prime}$.
CCCIII. June 20.-Observed on the mainland at a Fishing Station opposite the north-west end of Big Island, which bore E. $22^{\circ} \mathrm{N}$. Lat. $61^{\circ} 11^{\prime} \cdot 7$; long. $116^{\circ} 38^{\prime}$.
\[

$$
\begin{array}{lllllll}
\text { Variation by collimator, } 6.2 \text { A.M. } & . & . & . & 05 & 28 \\
\text { Dip (observed March 18) } & \text {. } & \text {. } & . & . & 82 & 8.7
\end{array}
$$
\]

Horizontal force in absolute measure, by angles of deflection only :-

	${ }^{u}$		m	x	¢	w.
Magnet 30	23°	$0^{\prime} 3^{1}$	$0 \cdot 4002$	1.8939	13.859	(1.0)
, 31	20	$32 \cdot 4$	$0 \cdot 3592$	1.8877	13.81:3	(1.0)
				1.8908	$13 \cdot 836$	(02)

CCCIV. Observed at noon opposite the eastern extremity of the same island, which is the entrance of the river. Lat. $61^{\circ} 7^{\prime} \cdot 7$.
CCCV. Jume 21.-Observed at Hay River, on the south side of Great Slate Lake, the present site of the Roman Catholic Mission of St. Anne. Lat. $60^{\circ} 48^{\prime}$; long. $115^{\circ} 18^{\prime}$.

$$
\text { Variation by collimator, } 7 \text { A.M. } 3556 \mathrm{E} \text {. }
$$

CCCVI. Observed at noon on the lake near Hay River. Lat. $60^{\circ} 49^{\prime}$.
CCCVII. Jume 22.-At Fort Resolution, Great Slave Lake. Lat. by my observation, $61^{\circ} 10^{\prime} 42^{\prime \prime}$; Franklin, $1825,61^{\circ} 10^{\prime} 26^{\prime \prime}$; long. Franklin, $113^{\circ} 45^{\prime}$; T. Simpson, 1836, $113^{\prime} 48^{\prime}$.

${ }^{1}$ These angles may be compared with the following observed before and after:-

Horizontal force in absolute measure :-

June 22.	Corrected T		m	x	¢	w.
	Magnet 30	5.5320	0.3998	1.7619	13.942	(1.5)
,	, 31	5.8714	$0 \cdot 3585$	1.7647	$13 \cdot 964$	(1.5)
"	, 17	6.0479	$0 \cdot 6700$	1.7643	13.961	(155)
				1.7636	13.956	$(0 \cdot 45)$

Equivalent in relative ralue to $1 \cdot 8139$.
June 23.-I left Fort Resolution in a canoe provided for me by Mr. McMurray, and made for the mouth of Buffalo Creek, about twelve miles S. by W. of the fort. This creek is a small stream flowing into the lake, and is navigable by canoe for nearly fifty miles, when there comes a long portage into Slave River, called the Portage de Grande Détour. It cuts off about thirty miles of the latter river. I had previously travelled by it on snow shoes, in March. The transformation produced by the advance of the summer was rery striking.

CCCYIII. June 24.-Obscrved lat. at noon, $60^{\circ} 54^{\prime} \cdot 3$.
CCCIX. June 25.-Observed for time, a.m. Lat. by account, $60^{\circ} 3 t^{\prime}$; long. $113^{\circ} 12^{\prime} 5$.
CCCX. Observed at noon. Lat. $60^{\circ} 29^{\prime} \cdot 7$.

Reached the Portage de Grande Détour. Lat. $60^{\circ} 22^{\prime}$; long. 113°.

$$
\begin{aligned}
& \text { Observed variation by collimator, } 5.58 \text { p.m. } \\
& \text { Dip, Gambey No 1 }
\end{aligned} .
$$

In passing this portage the men were attacked by a bear, which the guide, Pierre Blondin, was fortunate enough to shoot. Encamped here.
CCCXI. June 26.-Observed at noon at the first small lake in the portage. Lat. $60^{\circ} 20^{\prime} \cdot 6$.
CCCXII. June 27.-Reached Salt River A.n., and obserred for time. Lat. $60^{\circ} 6^{\prime}$; long. $112^{\circ} 15^{\prime}$.
CCCXIII. Observed at noon. Lat. $60^{\circ} 2^{\prime} \cdot 2$.
CCCXIV. Observed at p.m. Pelican Portage. Lat. $59^{\circ} 58^{\prime}$; long. $111^{\circ} 51^{\prime}$.

$$
\begin{aligned}
& \text { Yariation by collimator, 6.24 p.a. . . . } 3615 \mathrm{E} \text {. } \\
& \text { Dip, Gamley No. } 1 \text {. } 82 \text { 20.8 }
\end{aligned}
$$

This station is about ninety-five miles north of Fort Chiperyan (Station CCXXIX), where I arrived again, without further observation, on June 30,1844 .

POSTSCRIPT.

Since the preceding pages were printed it has been noticed that the value of the horizontal force at Toronto for the year 1845, assumed by Sir E. Sabine in 1846, and which enters into the factor-

$$
\frac{13 \cdot 896}{1 \cdot 836}=7 \cdot 5686
$$

employed for converting Relative Force into Absolute Force (ante, p. 57), was subsequently corrected by re-estimation of some of the constants. (See Toronto, Vol. III. p. cvi, 1857.)

			Horizontal force	Total force.
As published 1846	.	.	.5380	13904
As corrected 1857	.	.	3.5476	13942

The effect is to alter the above ratio to-

$$
\frac{13 \cdot 9086}{1 \cdot 8365}=7 \cdot 5734
$$

II.
which slightly augments the values of ϕ. The correction in those cases in which the value in the text is solely deduced from observations with Fox's or Lloyd's needle, assuming a medium force of $14 \cdot 00$, is +0.0058 . Where, however, the value of ϕ is partly deduced from those observations and partly from absolute determinations or vibrations, which are not affected, it is less in proportion to their relative weight. If the weights are equal, it is $+\cdot 0029$, generally from $+\cdot 002$ to $+\cdot 004$. Such a correction in the third decimal may be safely disregarded in a general comparison, but may require notice when data exist for determining the rate of secular change of force which has taken place since 1844.

The above ratio is obtained as follows:-

Table XIX.

liecrapitulation of Maynetical Stations in Geographical Order:

(The figures in the column W. signify the relative value of the determination of Force in the preceding column, by the scale explained at p.41.)

Table NLX.-contimuer.

Station number	Station	Lat.	Long.	Var.	Dip	Force, British Units	1F\%.	Force, Cierman Units Unit
XI	Arlmer	$45 \quad 15$	\bigcirc	$\bigcirc 1$	7641	$13 \cdot 836$	$0 \cdot 25$	$6 \cdot 881$
N1I	Chat Falls	4526	7632	-	757	$13 \cdot 916$	$0 \cdot 5$	6-413
XIII	Port du Fort	4.536	7653	1011 W.	-	-	-	-
xv	Gri. Calumet	4545	7640	-	$7644 \cdot 4$	$13 * 32$	$0 \cdot 6$	6.3:8
XVI	Fort Coulonge .	$15 \quad 51 \cdot 9$	7645	-	7729.7	$13 \cdot 911$	$1 \cdot 25$	$6 \cdot 414$
XYiI	Pte. Baptême	465	3726	-	$\begin{array}{lll}77 & 19 \cdot 1\end{array}$	13.775	0.6	$6 \cdot 851$
xviif	Ptge. 2-Juachims	$46 \quad 12$	7740	- Tr	$7 \% 38$	$13 \cdot 830$	085	$6 \cdot 377$
NIX	Roche Capitaine	4615	7745	$5 \quad 8 \cdot 8 \mathrm{~W}$.	-	-	-	-
xX	Aberdeen . .	4614	77.5	533 Wr .	-	-	-	-
XXII	Trou Portage	4615	78 16	-	77244	13.914	$0 \cdot 85$	$6 \cdot 415$
xxili	Mattawa .	41818	78425	$336 \cdot \mathrm{~W}$.	-	-	-	-
xxiy	Little River	$4615 \cdot 4$	7844	-	7728.5	$13 \cdot 956$	$0 \cdot 85$	$6 \cdot 435$
xxyi	Tront Lake	$46 \quad 18 \cdot 5$	7913	-	721.7	13.949	0.85	$6 \cdot 431$
xxyis	P. Grande Vase	$46 \quad 19 \cdot 5$	7920	315 W .	-	-	-	-
xxvili	r", ", W.	4618	792	$453 \cdot 4 \mathrm{~W}$	-	-	-	-
xxy	L. Nipessing .	4611	7948	-	$77 \quad 9 \cdot 5$	13.861	$0 \cdot 95$	6.391
xxxi	French River .	465	s0 20	$532 \cdot 1 \mathrm{~W}$.	-	-	-	-
xxxifi	Ricollet's Fall .	$45 \quad 57$	8030	-	$7645 \cdot 4$	14.130	$0 \cdot 85$	$6 \cdot 515$
Exxiy	Penetanguishene	4449	801	-	$76 \quad 20 \cdot 1$	$14 \cdot 077$	$0 \cdot 3$	$1 \cdot 691$
A	Toronto . .	$4339 \cdot 4$	7921	-	5 11 7	$13 \cdot 896$	-	$6 \cdot 407$
	Lake Huron							
xxxy	Pte. au Croix .	$45 \quad 55.5$	81 2	-	$7631 \cdot 3$	13.903	$1 \cdot 15$	$6 \cdot 410$
xxxy	George's Island	$45 \quad 57$	8132	1256 W.	-	-	-	-
xxxvili	Frazer Bay .	460	8140	-	$\begin{array}{ll}76 & 5 \cdot 6\end{array}$	$13 \cdot 906$	0.85	$6 \cdot 412$
XL	Fort La Cloche	467	823	210 W .	7650%		-	
Xlii	Snake Isiand	4610	$82 \cdot 10$	-	$77 \quad 5 \cdot 5$	$13 \cdot 8.50$	$0 \cdot 85$	$6 \cdot 386$
Xliif	R. Mississaqui .	4610	83.2	2127 E .	-	-	-	-
XLIV	Cranberty Bay	46100°	$82 \quad 33$	$0 \cdot 5 \cdot 4 \mathrm{~W}$			-	-
XLVI	'lessaion I't.	4617	8333	0 1114 W.	$76 \quad 59 \cdot 3$	$14 \cdot 020$	$0 \cdot 85$	$6 \cdot 464$
NLViI	Bear Camp	$4620 \cdot 2$	8350	$0 \quad 2 \cdot 5 \mathrm{E}$.	-	-	-	-
XLVIII	Sugar Istand.	$16-29 \cdot 7$	8417	$13 \cdot 6 \mathrm{E}$.	-_		-	
NLIX	Sault St. Marie	$1630 \cdot 9$	8t 21\%	11.1 E .	78	13.824	$0 \cdot 38$	$6 \cdot 371$
	Lake Superior.							
L	Pte. aux Pins	-16 29.9	8429	-	$7813 \cdot 1$	$14 \cdot 080$	$1 \cdot 1$	$6 \cdot 492$
LI	Pte. au Crêpe.	$16 \quad 58 \cdot 0$	8144	3 2.8 E.	7811%	13.959	0.9 .5	6.436
LII	C. Garcantua	47866	85	$0: 38 \cdot 0 \mathrm{E}$.	7786.1	$15 \cdot 265$	$0 \cdot 3$	$7 \cdot 038$
LIII	Michipicoton	$47 \quad 56 \cdot 0$	8454	$020 \cdot 3 \mathrm{E}$.	$78 \quad 7 \cdots$	14.015	$1 \cdot 15$	$6: 315$
LV	Chienne R. .	4758	8516	221 E .	-	.-	-	-
LVI	Le Petit Mort	$47 \quad 56$	8.510	$359 \% \mathrm{E}$.	-	-	-	-
LVIII	Otter lsland	487	847	-	\% 64836	13.568	0.85	$6 \cdot 256$
LX	R. Blanche	48.316	86.14	$215 \cdot 2 \mathrm{~F}$.	75 33.1	$14 \cdot 117$	$11: 3$	$6 \cdot 509$
LXI	The Pic	$1835 \cdot 3$	8615	53.9 E .	7n 36.0	18.901	$1 \cdot 15$	$6 \cdot 409$
LXIII	Battle Island .	1845	8783	-	76.24	19.6n9	$0:$	$6 \cdot 29$ ล
LSIV	Simpson's Island	4849	87.15	54.8 E .	7x 580	14.1120	0.85	$6 \cdot 464$
LXVI	linclie du Bout	18.34	8814	126.7	-	-	-	-
LXVIII	Thunder Cape.	4820	86 52	-	$7 \times 23 \cdots$	$14 \cdot 218$	0.85	10.5 .26
LXIX	Fort Willian	$48.23^{\circ}{ }^{\circ}$	8 818.5	5 F-¢ E.	784	$14 \cdot 078$	$2 \cdot 15$	$6 \cdot 191$
	Canoe Route.							
Lx\%	Ptce. Eearté .	4825	8944	-	77185	$14 \cdot 013$	0.85	$6 \cdot 161$
Lxxi	Pture de Lisle .	1526	8942	$3918 \cdot 0 \mathrm{E}$.	-	-	-	-
LXXII	Manvais Portage	1899	8944	540.8 E .	-	-	-	-
INXIII	1 Oog Portage.	-18 39	-3 30	-1	-826\%	14.1:1	$1 \cdot 1.1$	$6 \cdot 512$
LXXIV	Dog lake	1×14	89.10	$651 \cdot 1 \mathrm{E}$ 。	-	,	,	-
LXXVI	Prinime I'ortase	18.575	901%	-	$7 \times 26 \cdot 1$	111.180	$1 \cdot \%$	6.495
Lxxvili	Savamnaly Portago	183	! 103	$735 \% \mathrm{E}$		$1 \cdot 1 \cdot 10{ }^{-}$	$1 \cdot \cdots$	$6 \cdot 511$

Table NIX-contimued.

Station	Station	Lat.	Long.	Yir.	Dip	Force, British Units	W.	Force, German Units
Lxxy	Freach I'r rtage	枵\%	918	-	$788^{\circ} 20^{\prime} 4$	$14 \cdot 069$	0.85	$6 \cdot 487$
Lxxxi	Ptre. des Morts	4836	9125	$10: 835 \mathrm{E}$.	-	-	-	
Lxxim	Ptre. Two livers	4×85	91.3	$10-576 \mathrm{E}$.	$7749 \cdot 1$	$14 \cdot 031$	$1 \cdot 15$	$6 \cdot 469$
Lxximit	L. it la Crusse. .	4824	924	7525 E.	7751.0	14.06:3	$0 \cdot 8.5$	6.4.4.
Lxxxy	and I'ortace	48142	$(128$	1020.5 E .	$7740 \cdot 1$	$14 \cdot 026$	0.85	$6 \cdot 167$
Lxxxyit	Sturseon Lake	4827.5	9238	-	$7744 \cdot 8$	$14 \cdot 0.7$	0.85	6.491
Lxxivili	1st Portage	4828	9241	$1025 \cdot 2 \mathrm{E}$.	-	-		-
Lxxmix	Riany Lake	483.8	9250	$1053 \cdot 6 \mathrm{E}$.	$7747 \cdot 9$	14•095	$0 \cdot 85$	$6 \cdot 499$
xe	Fort Fraveres	4836	93.29 .7	93500 E .	7380	$14 \cdot 023$	$1 \cdot 80$	$6 \cdot 466$
x, i	Rainy liver	4541	9431	13 4.5 E.	775704	$14 \cdot 309$	$1 \cdot 1$	6.597
xciv	L. of the Woods	4919	9440	1342.6 E.	88 3	$14 \cdot 110$	0.85	$6 \cdot 489$
xovir		498	9437	12261.	7816.7	14044	$0 \cdot 85$	$6 \cdot 475$
c	Rat Portage	49459	$9433 \cdot 3$	938 l.	78	$14 \cdot 023$	$1 \cdot 3$	(i)466
('11	In Wimmipg liver	$5010 \cdot 2$	9512	12.85 E .	$7910 \cdot 6$	$14 \cdot 204$	0.6	(6.54:
(1)	slave fans.	5014.	9540	-	$7857 \cdot 1$	$14 \cdot 094$	$0 \cdot 6$	6.498
Cvi	Pinnawa hiver	S016	963	12456	-	-	-	
cuil	Font Alexanher	5086	9622	1355.5 E.	7858.4	14.095	09	$6 \cdot 500$
cx	Lake Sinnipg	.30 35	9685	1341 E.	78344	$14 \cdot 128$	$0 \cdot 6$	$6 \cdot 314$
(x1		5083.1	$96: 3$	-	$\begin{array}{ll}79 & 5 \cdot 1\end{array}$	-		-
Cxili	Fore fidmax	49532	97156	16 4.8 E.	7818.8	14.050	$2 \cdot 8$	6.488
cxiy	Red liser	$5018 \cdot 2$	965	-	78 34	14.094	$0 \cdot 85$	$6 \cdot 498$
cxvil	Lake Wimnicg	514	96	-	$7931 \cdot 5$	$14 \cdot 516$	$0 \cdot 30$	$6 \cdot 693$
cruili	,	5134	9643	$15 \quad 6.7 \mathrm{E}$.	$79 \quad 6 \cdot 1$	14:39:	$0 \cdot 30$	$6 \cdot 636$
cxyl	,	5136	96	13.455 E.	$7911 \cdot 8$	$14 \cdot(50)$	0.85	$6 \cdot 497$
cmin	,	5136.7	9658	$1625 \cdot 1 \mathrm{E}$.	7938.0	$14 \cdot 462$	0.85	$6 \cdot 668$
cxan	,	S140	963	$213 \times 3 \mathrm{E}$.	-	-	-	-
cxir	,	51445	172	1521.2 E .	79390	$15 \cdot 382$	$0 \cdot 3$	7-092
cxuiv	"	5146	970	-	79 28:3	$14 \cdot 414$	$1 \cdot 25$	$6 \cdot 646$
cxive	"	526.5	978	15 38.6 E.	-	-		-
cxivil	,	5220.9	9710	16516 E .	$80 \quad 24 \cdot 4$	$14 \cdot 396$	$0 \cdot 3$	$6 \cdot 638$
cxin	"	5282	9712	14198 E.	$80: 39 \cdot 2$	$14 \cdot 150$	$0 \cdot 6$	$6 \cdot 524$
cxse	"	5225	9718	$1922 \cdot 7 \mathrm{E}$	-	-	1	-
exxix	Oid vorw	$5231 \cdot 6$	9718	19 12.2 E.	80	$14 \cdot 113$	$2 \cdot 1$	$6 \cdot 492$
cxaxiy	Old Norway House	$5341 \cdot 6$	$\begin{array}{ll}98 & 1.4\end{array}$		80 40.4	$14 \cdot 162$	$0 \cdot 9$	$6 \cdot 530$
cxaxy	Norway House	5389	$98 \quad 39$	15350 E .	\$1 10.0	$14 \cdot 098$	$8 \cdot 15$	6.500
	Canoe Route.							
cxxxylil	Carpenter's Lake		9740	2126.0 E.				
cal	Hairy Lake .	5420	9728	1843.7 E .	8120.9	$14 \cdot 067$	0.8	$6 \cdot 486$
cxla	Lakelet	5423	${ }_{97}^{97} 4$	$3511 \cdot 2 \mathrm{E}$.	-	-	-	-
cxliy	Echiamamis	5421	$97 \quad 2$	$19 \quad 5 \cdot 3 \mathrm{E}$.				
cxliy	White Fall Portage.	$5123 \cdot 3$	9631	1732 E.	8147.9	$14 \cdot 203$	$0 \cdot 8$	6.549
cxly	Hills Gates	5442	9610	-	$8157 \cdot 0$	$14 \cdot 194$	$1 \cdot 2$	6.543
cxlyili	Oxford lake.	$\begin{array}{lll}54 & 46.8\end{array}$	$\begin{array}{ll}96 & 9 \\ 95 & 8\end{array}$	$1253 \cdot 6 \mathrm{E}$.	80-85.8	- $1 \cdot 190$	$1 \cdot 0$	6.514
Clin	Knee Lake	54 54 54 51	9530 9511	$1031 \cdot 5 \mathrm{E}$. 14 14.2 E.	8238.8	$14 \cdot 192$	$1 \cdot 0$	6.544
cly	Long I'ortage	$5514 \cdot 1$	9422	$12306 \cdot 4 \mathrm{E}$.	8213.9	$14 \cdot 210$	$1 \cdot 55$	$6 \cdot 552$
cluti	levils Manding Pl.	5524	940	$1149 \cdot 1 \mathrm{E}$.	8255	$14 \cdot 227$	$0 \cdot 8$	6.560
Clyili	Morgan's Rocks	$55 \quad 29$	9358	$1111 \cdot 0 \mathrm{E}$.				
clix	White Mud Portage.	5533	$9344 \cdot 6$	1051 E.	$83 \quad 2 \cdot 9$	$14 \cdot 134$	$1 \cdot 6$	$6 \cdot 517$
clai	Shawatawa	$56 \geq 1$	93 "	11:0 E.	$8336 \cdot 2$	$14 \cdot 130$	$1 \cdot 65$	6.515
cleit	York Factory 1	5659.9	9226	$9 \quad 10.6 \mathrm{EF}$	$8347 \cdot 2$	$1+051$	$2 \cdot 50$	6.480
clxin	Lake Winniper	5353	9889	$1721 \cdot 2 \mathrm{E}$.	-	-		
clay	Macintosh I land	5340	995	2130.4 E .	-	-		
(1exyl	Lake Wimmiper	53812	9912	$17 \quad 7 \cdot 3 \mathrm{E}$.	$8022 \cdot 2$	14.098	$1 \cdot 5$	6.500
clavir	Saskatchewan .	5:3 17	9925	168392 E .	-	-		
clais	(irand lapid	5.3 8.4	91+27	1819.0 E .	8026.5	11.141	$1 \cdot 5 \pi$	6.524
clix	Cross Lake	$33810 \cdot 7$	998	18 3\% E.	8028.3	$14 \cdot 165$	$1 \cdot 85$	$6 \cdot 5: 1$
chaxi	Hare Island	5312.9	1600	-	$80 \quad 7 \cdot 1$	14.063	$0 \cdot 6$	$6 \cdot 481$
Clxxili	Muddy Lake	$5319 \cdot 3$	10035	18329 E .	-	-	-	-

Table NIN．－continued．

Station number	Station	Lat．	Long．	Var．	Dip	Force． Briti－h Units	H．	Force， Germal Units
Claxiy	Devil＇s Drum Island．	${ }^{\circ} 8195$	$100{ }^{\circ} 8$	$17 \frac{2}{3} \cdot \underline{2}$ E．	$80^{\circ} 00^{\circ} 0$	$13 \cdot 814$	$0 \cdot 3$	$6 \cdot 370$
CLXXVII	Round Turn	5348.8	10123	1956.8 E ．	$80 \quad 24 \cdot 4$	$11 \cdot 318$	$0 \cdot 3$	6.755
Claxix	Big Bend	$5352 \cdot 0$	10128	20454 E ．	－	－	－	－
Claxil	Little River	5351	10150	17 4．2 E．	－	－	－	－
CLJxNill	Cumberland Ilo．	5356.7	$102 \quad 19 \cdot 2$	1932.5 E．	$80 \quad 25 \cdot 0$	$14 \cdot 143$	$4 \cdot 2$	6.521
Claxxiy	Pine Island Lake	53 5～	10217	$1759 \cdot 7 \mathrm{E}$ ．	－	－		－
ClxXXV1	River Malign	$2421 \cdot 4$	10210	$2123 \cdot 0 \mathrm{E}$ ．	－	－	－	－
CLAXXVII	Limestone L＇oint	5426	$10 \geq 10$	－	$80 \quad 34 \cdot 2$	$14 \cdot 032$	$1 \cdot 3$	$6 \cdot 170$
CxC	Carp Portage	5147.2	$10.239 \cdot 5$	24 8．6 E．	so $39 \cdot 6$	－	－	－
CxCI	Pine Portage	554	$10: 42$	－	$80 \quad 5 \div 7$	$14 \cdot 109$	$1 \cdot 3$	$6 \cdot 505$
Cxeli	Frog Portase	$55-27$	10819.5	－	$80 \quad 59 \cdot 3$	$14 \cdot 017$	$1 \cdot 3$	$6 \cdot 463$
Cscy	Little Fock Portage．	5580	11434	1627.3 E ．	$80 \quad 16 \cdot 4$	$15 \cdot 071$	$1 \cdot 1$	$6 \cdot 949$
cxevol	Great Devil＇s l＇tge．	5540	10447.7	2448.5 E ．	$80 \quad 30 \cdot 9$	$14 \cdot 118$	$1 \cdot 2$	$6 \cdot 509$
c	Tront Portage	$55+2 \cdot 5$	10529	$212 \pi \cdot 0 \mathrm{E}$ ．	－	－	－	－－
CClli	Liapide qui parle	5．） 43.5	10550	21.5 .9 E ．	－	－	－	－
cev	Pine Portage ．	5543	1060	－	$8040 \cdot 3$	14.023	$1 \cdot 1$	$6 \cdot 166$
CCVI	Snake I＇oint	5\％ 51	106：38	2617.8 E ．	80.38	－	－	，
c＇Clil	＂Liapid	554 ± 1	$10635 \cdot 2$	－	$80 \quad 38 \cdot 8$	$14 \cdot 150$	$1 \cdot 0$	$6 \cdot 686$
CClx	Primean lake	$55 \quad 57$	10710	2315.9 E ．	－	－		－
ccis	Ptige．Sonmante	5554	10736	$2643 \cdot 1$ E．	so 11．2	14．0．0	$0 \cdot 9$	$6 \cdot 178$
ccil	Fort i la Crosse	5526.8	10751	2454.7 E ．	$80 \quad 9 \cdot 8$	$14 \cdot 012$	$3 \cdot 8$	$6 \cdot 512$
cenil	Buftialo	$56 \quad 4$	10840	－	80.37	$14 \cdot 122$	$0 \cdot 63$	$6 \cdot 165$
coxy	long I＇ortage	$5614 \cdot 7$	109 18	2836.5 E．	$80 \quad 19 \cdot \%$	13.865	$0 \cdot 63$	$6 \cdot 393$
CCNV^{-1}	Pine Portage	$56: 20$	10914	25.29 .5 E ．	－	－	－	－
ccxvil	Methy Portace	54,35	10937	2651.4 E ，	$8036 \cdot \frac{1}{1}$	$13 \cdot 980$	$0 \cdot 63$	$6 \cdot 446$
CCxyll	＂N．end ．	$5643 \cdot 7$	$1095 \sim \cdot 2$	2 －2 6 \％E．	s0 38.3	－	－	－
ccix	Bisy Rock Portage	$56.43 \cdot 5$	1104	27 4r• ${ }^{\text {E E．}}$	－	－	－	－
cexil	Cascade Portage	$5642 \cdot 5$	11015	$2649 \cdot 6 \mathrm{E}$ ．	－	－	－	－
cexmil	l＇embina River	5689	1105		80836	13．9．59	$0 \cdot 68$	$6 \cdot 421$
cenevi	Pierre an Calumet	5724	11135	$2.513 \cdot 6 \mathrm{E}$ ．	r1 16.8	14.559	（1．6：3	6.712
coxavil	l＇t．Briné	587	1112	－	8186	$13 \cdot 933$	1063	$6 \cdot 4.4$
ccrxix	Foict Cinpfuxan	5843	$11118 \cdot \%$	$2845 \cdot 8 \mathrm{E}$ ．	$8136 \cdot 8$	13.885	$3 \cdot 95$	$6 \cdot 402$
	Peace River．							
CCXXXI	I＇t．Providence	5858	11210	30 S5 E．	$8146 \cdot 1$	－	－	\sim
cexnxiy	On Peace Itiver	5858	$11256 \cdot 1$	3224 E	8136.9	－	－	－
ccxsxvil	Poplar［sland	5839	$11410 \cdot$	2629.8 E ．	81 4．8	－	－	－
CCXXXIS	The Falls ．	$5824 \cdot 3$	$11451 \cdot 1$	：0） $2 \cdot \mathrm{E}$ ．	$8050 \cdot 8$	－	－	－
cCXLII	Font Yermilion	5824.5	$115 \quad 58 \cdot 6$	3\％ 40 L ．	80480	14.022	1.5 .5	$6 \cdot 465$
ccxivi	Baril River ．	5757	1174.7	2956 L ．	8080	－	－	－
CCL	On Peace River	5719	11717	2853 E ．	$7927 \cdot 0$	－	－	－
CCLIN	Near li．Cadotte	5047	1172	27 3 E．	7920.7	－	－	－
CCLX	Font Dunvegan	$55 \quad 55 \cdot 6$	$11825 \cdot 5$	$2716 \cdot 5 \mathrm{~L}$ ．	$7846 \cdot 2$	14.000	$1 \cdot 15$	$6 \cdot 165$
CClaiy	Ft．Leaser Slive L．	$5582 \cdot 6$	1160	2652.5 E ．	7x 39.0	$13 \cdot 6.2$	$6 \cdot 3$	$6 \cdot 108$
colavi	Swan Point	$55 \quad 26$	$115 \quad 3 \cdot 1$	${ }^{2} 619 \cdot 0 \mathrm{E}$ ．	7x 29.9	－	－	－
CClasin	Forks of the Atha－ basea	5513	11353%	$\because 628 \cdot 0 \mathrm{E}$ ．	$\begin{array}{ll} 78 & 55 \cdot 2 \\ 78 & 31 \cdot 1 \end{array}$	－	－	－
cclexill	On Athabasea River．	5443	1142	$2629 \cdot 1 \mathrm{E}$ ．		－	－	－
celdxavil	Fort Assinibowe	51 21．7	11428.6	2489 E ．	$78150 \cdot 2$	－	－	－
CCLEXIX	lembina River	5． $3 \cdot 2$	$1140 \cdot 2$	2.23 E ．	75.5	－	－	－
1	R．Saskatchewan．							
CClXXX	Fort Emanonton	53318	$11330 \cdot 8$	2347 E．	$7754 \cdots$	110600	$1 \cdot 45$	（6．155
cclexxal	On Saskatchewan	544.5	$11219 \cdot 5$	2425 E ．	785	13.70 .5	$0 \cdot 3$	$15: 319$
cclaxxil	Moose Hill	6350	11059	$21-26 \cdot 6 \mathrm{E}$.	763.5	$1: 3 \cdot 812$	$10 \cdot 3$	6－36
celxxxiy	Font litr	$5331 \cdot 1$	$10947 \cdot 2$	23 9 $2 \cdot \mathrm{E}$ ．	78 410	14.15 ！	$0 \cdot 3$	6．526
CClaxiy	Willow Hills	$530 \cdot 1$	10x 30.	$2 \mathrm{~S} 21 \cdot 1 \mathrm{l}$	$7825 \cdot 1$	$1+218$	$11 \cdot 3$	6\％56
CGLAXAV11	Elbow	二2 $21 \cdot 1$	10783	$25: 1 \cdot 4 \mathrm{E}$	－8 160	－1．0s\％	$0 \cdot: 3$	6－16 6
celsmax	CARLTON：	$5250 \cdot 8$	10632	22.5 L ．	7×3017	1\％゙らい	$11: 37$	6
（anc）	Near Fort a la Corne．	5313	101510	2.15 E ．	7911%	$1: 3: 421$	$10 \cdot 3$	（1．120

Table XIX.-continued.

Station number	Station	Lat.	Long.	Var.	Dip	Force, British Units	W.	Force, German Units
	Northern Section.							
CCxCII	Fort Good Ifope	${ }_{6}^{6} \times 16$	12831	01	8.3 $5.5 \cdot 9$	$13 \cdot 681$	$0 \cdot 6$	$6 \cdot 309$
CCACIV	Fort Nommin .	$6+40 \cdot 6$	1244.8	-	$8234 \cdot 3$	$13 \cdot 653$	$0 \cdot 57$	$6 \cdot 295$
cexcy	Fort Simpion .	6151.7	$12125 \cdot 3$	$38 \quad 0.4$ E.	$815 \cdot 2 \cdot 2$	13.808	$1 \cdot 5$	$6 \cdot 367$
ccacrii	Burnt Point .	6110	1199	36 4.0 E.	-	-	-	-
coscos	Sandy Point	6120	1180	385 E.	-	-	-	-
CCCI	liver .	6125	11731	$36 \quad 7$ E.	-	-	-	-
cccill	Fishing Station	61 117\%	11638	3528 E.	$82 \quad 8.7$	$13 \cdot 836$	$0 \cdot 2$	$6 \cdot 379$
cocr	Hay River	6048	11518	3556.0 E .	-		2	,
ccevil	Fort Remoletion	61 10**	11346	3712.5 E.	8244.4	$13 \cdot 956$	$0 \cdot 45$	$6 \cdot 435$
ccer	Ptge. de Gr. Détour.	6029	1130	$3515 \cdot 0 \mathrm{E}$.	$8233 \cdot 6$	-	-	-
ccesiv	Pelican Portage	5958	11151	3615 E .	8226.8	-	-	-

APPENDIX I.

INDUCTION MAGNETOMETER.

For the convenience of any reader who may not have access to the writings of the late Provost Humphrey Lloyd, D.D., referred to at pp. 42 and 45 (note), I subjoin his exposition of the theoretical principles upon which the beautiful instrument above-named was devised, extracted from the 'Proceedings of the Royal Irish Academy, 1842,' and the 'Dublin Magnetical and Meteorological Observations,' vol. i., 1864.

- When a bar of soft iron is held in any direction not perpendicular to that of the earth's magnetic force, it becomes a temporary magnet by the inducing action of that part of the force which acts in its direction. The changes in the induced magnetism may be assumed to be proportioned to those of the inducing force ; and as the former may be measured by their effects, the latter become known ' (1865.)

Let X and Y denote the horizontal and vertical components of the earth's magnetic force, M the intensity of the permanent magnetism in the acting pole of the iron bar, and m the magnetic moment of the suspended magnet. The intensity of the induced magnetism is by the hypothesis equal to

$$
K Y
$$

K being an unknown constant ; and when this is of the same name as the permanent magnetism, the intensity of the acting force at the unit of distance is

$$
K Y+M
$$

Accordingly, the moment of this force to turn the suspended magnet is $(K Y+M I) m r \cos u, u$ being the angle of deflection, and r a constant depending on the distance ; or making for abridgment $k r=p, M r=q$.

$$
(p Y+q) m \cos u
$$

But this deflecting force is resisted by the earth's horizontal force, the moment of which to turn the magnet is

$$
X m \sin u
$$

and the magnet will rest when these moments are equal. Hence the equation of equilibrium is

$$
\begin{equation*}
p Y+q=X \tan u \tag{1}
\end{equation*}
$$

By the same reasoning it will appear, that when the induced and permanent magnetisms are of contrary names, there is

$$
\begin{equation*}
p Y-q=X \tan u^{\prime} \tag{2}
\end{equation*}
$$

in which u^{\prime} is the new angle of deflection when the bar is inverted. Adding these equations together, and remembering that $Y=X \tan \theta$, θ being the inclination, we have

$$
\begin{equation*}
2 p \tan \theta=\tan u+\tan u^{\prime} \tag{3}
\end{equation*}
$$

This equation would furnish at once the inclination songht, provided we knew the value of the constant K. In order to determine it, we have only to place the iron bar horizontally in the magnetic meridian, its acting pole remaining in the same place as before, but pointing alternately to the north and to the south. The inducing force is in this case the horizontal component of the earth's magnetic force; and it will be readily seen that the equations of equilibrium are similar to (1) and (2), substituting X for Y. If, therefore, v and v^{\prime} denote the angles of deflection in these positions, we have

$$
\begin{equation*}
2 p=\tan v+\tan v^{\prime} \tag{4}
\end{equation*}
$$

and dividing (3) by this,

$$
\begin{equation*}
\tan \theta=\frac{\tan u+\tan u^{\prime}}{\tan v+\tan v^{\prime}} \tag{5}
\end{equation*}
$$

Thus, from the deffections thus produced in these four positions of the bar, we obtain the inclination " (1842.)

The author proceeds to show how changes of inclination are to be inferred from changes in the scale reading of the instrument, by the formula

$$
\Delta \theta=\frac{\sin 2 \theta}{\sin 2 u} \Delta u
$$

With these, however, we are not at present concerned.
The Induction Magnetometer had reached this stage of its development, when furnished to the writer for employment in high Northern latitudes subsequently it received many improvements at the hands of its inventor and of Dr. Lamont, of Mumich, the chief of which was the addition of a second soft-iron bar; and on more full inrestigation Dr. Llord found it necessary to introduce a second unknown co-efficient q to be determined experimentally. This was never done for the American instrument, which was shortly afterwards sent to India. The observations recorded in the text are given chiefly as interesting to show the great range of the angles u and u^{\prime} in high magnetic latitudes, and for any use they may be to future travellers meditating its employment.

APPENDIX II.

IDENTIFICATION OF THE STATIONS INCLUDED IV TABLE NIV. pp. 52-54.

1. Quebec, a, within the ramparts, on a grass plot in front of the then Artillery Barracks.
b, near Wolfe and Montcalm's monument.
2. Three Rivers, in the garden of the late Mr. Bell.
3. Sorel, on the bank of the river, a little east of the Roman Catholic Church.
4. Kingsey, Drummond Co. L.C., in the garden of Captain Cox.
5. Stanstead, in the garden of the hotel near the Anglican Church.
6. St. Jolm's, or Dorchester, behind the hotel about a quarter of a mile above the bridge.
7. St. Helen's Island, Montreal, about 100 yards S.S.IV. of the barracks.

7a. Montreal, at the foot of the momntain in the garden of the house then rented as the quarter of the commanding Royal Engineer.
8. Manhattanville, N.Y., in a grove behind the Bloomingdale Lunatic Asylum, formation, mica slate.
9. Providence Phode Island, at the steamboat landing.
10. Dorchester, Mass., near Grove Hall.
11. Cambridge, Mass., in the garden of the Observatory, not less than 30 feet from the magnetical instruments.
12. Philadelphia, at Girard's College.
13. Baltimore, a, at Dr. Bache's station in Howard's Wood, between Calvert and Washington Streets, about 400 yards N. 42° E. from the Washington monmment.
,$\quad b$, about 600 yards N. of the same monnment.
,$\quad \quad c$, in the Botanical Garden, St. Mary's College, at Dr. Nicolet's station.
14. Washington, D.C., in the grounds of the Capitol, west side of the lowest terrace between the centre and south alleys.
15. Princeton, N.J., in a field 200 yards belind the college, and to the right of $i t$.
16. Newhaven, Comn., on a void space in Grove Street, about 50 yards S. of the entrance to the Cemetery, and 36 yards from the iron fencing.
17. West Point, N.Y., in Professor Bartlett's garden.
18. Albany, N.Y., Professor J. Henry's station, on the side of țe hill between Orange and Patroon Streets, and E. of Hawk Street, N. 13° E. from the Boys' Academy, N. 40° W. from the Dutch Church.
A. Toronto, at the Observatory.
19. Cleveland, Ohio, at the foot of a hill about 20 yards from the landing.
20. Detroit, Mich., in a lane leading from the wharf to Jefferson Avenue, about 40 yards down.
21. South Manitou Island, Lake Michigan, about 40 yards from the wharf directly inland, under shelter of a hut.
22. Kingston, Canada, a, in the Artillery Square, near the flagstaff.

$$
\begin{array}{ll}
" & ", \quad b \text {, at Stewart's Point. } \\
" & ", \quad c, \text { on Kingston Common, near the Penitentiary. }
\end{array}
$$

23. Chicago, Ill. (not specified).
24. Hamilton, Lake Ontario, in the courtyard of the Farmer's Inn, 300 yards E. of the market-place, and about a mile W. of the landing.
25. Barrie, Lake Simcoe, about 60 yards from the lake in the garden of the hotel (then Bingham's Hotel).
26. Penetanguishene, Lake Huron, a, near Mrs. Wallace's Inn, about a quarter of a mile from the Barracks. b, in front of the Freemasons' Arms Imn.
27. Niagara Village, Lake Ontario, outside the fort in the garden of the Royal Engineers' quarter.
28. Rochester, N.Y., at the comer of Mill Street, in a garden behind the Mansion House Hotel (Whitbeck's).
29. Springfield, Mass., in a yard W. of the American Hotel, about 60 yards from the railroad.
30. Coburg, Ontario, in a yard adjoining Mr. Parry's House, nearly opposite a church.
31. Belleville, Bay of Quinté, in Dr. Reilly's garden.
32. Brockville Garden, Rockford's Hotel.
33. Prescott, in a field about 500 yards back from the river, and 150 yards from the fort, opposite Ogdensburg.
34. Williamsburg, Garden of Broueffe's Inn.
35. Cornwall, in the orchard behind Chesley's Inn.
36. Niagara Falls, near the Clifton Hotel.
37. Buffalo, behind the High School at the corner of Fourth and Delaware Streets.
38. Amherstburg, in Mr. J. Gordon's garden.
39. Sarnia, in a garden near the Ferry.
40. Goderich, in a garden at the foot of the hill.
41. Cincimati, in Mr. Longworth's garden, between Pike, Butler, and Symms Streets.
42. Mammoth Cave, Kentucky, taken at the mouth of the cave, which is situated a little to the S.W. of a line joining Glasgow and Litchfield, Ky., at about one-third of the distance measured from the former. The spot was 40 feet S.E. from the House.
43. Louisville, Ky., about a quarter of a mile S.S.W. of the Hospital, and half a mile from the river, in Jacob's Wood.

APPENDIX III. ${ }^{1}$

Comparison of the mean Irregular Fluctuations of the magnetical elements at stations of observation in North America, reprinted from the ' Proceedings of the American Association for the Advancement of Science, 1851.'

These results were arrived at by taking the difference between the observed scale reading at each hour of Göttingen mean time and the arithmetical mean for the same hour for the month. The square root of the mean of the squares of these differences is the quantity entered as the mean distrubance for the hour. It should be borne in mind that the years of observation 1843-4 coincided with a minimum of sun-spots.

Table XX.
Mem disturbance of the declination, October-February.

Local mean time	Toronto	Sitka	Lake Atlabasca	Local me.n time	Torcnto	Sitka	Lake Athabasca
Midnight	$\mathbf{1}^{\prime}, 72$	$4^{\prime}, 36$	$8^{\prime}, 5$	Noon	$1^{\prime}, 61$	$2^{\prime}, 67$	$4^{\prime}, 6$
13	1,33	4,18	9,9	1	1,54	2,55	4,3
14	1,60	3,62	8,6	2	1,34	2,20	4,7
15	1,59	2,97	7,4	3	1,71	2,14	4,7
16	1,52	2,92	11,0	4	1,81	1,95	4,4
17	1,67	2,84	$15,2^{2}$	5	1,86	1,81	3,7
18	1,75	2,75	10,6	6	1,02	1,90	4,3
19	1,29	2,82	8,5	7	0,84	3,09	3,8
20	1,82	2,88	5,5	8	1,53	2,47	4,6
21	1,89	2,80	4,6	9	2,16	2,51	6,3
22	1,52	3,10	5,1	10	2,72	3,43	10,2
23	1,68	2,79	$7,0^{3}$	11	2,27	3,32	9,7

In the next table, the same two stations are compared with Fort Simpson, on M‘Kenzie's river, in lat. $61^{\circ} 52^{\prime}$, long. $8^{\text {h }} 5^{\mathrm{m}} \mathrm{W}$. The period of observation compared is here the months of April and May 1844 ; embracing, however, only 46 observation days at the most northern station, but the full number at the others. Sundays are included at Sitka in both cases.
${ }^{1}$ See Note j. 9.
${ }^{2}$ By omitting one observation on January 25d $1^{\text {h Gött., when the extreme }}$ point of a great movement happened to coincide with the regular hour of observation, this value is reduced to 10,6 .
${ }^{3}$ By omitting a similar extreme observation on February 2d $\boldsymbol{7}^{\mathrm{h}}$ Gött., this value is reduced to $6,7^{\prime}$.

Table XXI.
Mean disturbance of declination, April-May 1814.

$\underset{\substack{\text { Local } \\ \text { mean time }}}{ }$	Toronto	Sitka	$\begin{gathered} \text { Fort } \\ \text { Simpson } \end{gathered}$	$\begin{gathered} \text { Local } \\ \text { mean time } \end{gathered}$	Toronto	Sita	$\underset{\operatorname{Sim}_{j}}{\text { Fison }}$
Midnight	2',89	5',18	14, ${ }^{\prime}$	Noon	2',05	2',58	$8^{\prime}, 0$
13	3,16	6,57	11,7	1	1,84	2,22	4,6
14	3,83	5,42	15,8	2	1,71	2,31	7 ,0
15	4,62	8,01	22,2	3	1,56	2,81	6,3
16	3,77	8,92	17,3	\pm	1, ,68	2,36	6,2
17	2,42	5,08	25, 6	5	1,88	2,96	7, ${ }^{\text {, }}$
18	2,43	3,60	22,9	6	2,04	4,03	8,1
19	3,97	2,69	22,3	7	2,78	4,16	8,8
20	2,91	2,49	19,7	8	2,29	2,11	12,3
21	2,16	2,10	12,0		2,94	3,51	15,1
22	2,08	2,46	12,2	10	4,58	3,90	13,1
23	2,24	2,57	(\%,2	11	2,73	3,58	9 ,2

The observations at Toronto were taken $2^{\mathrm{m}} 21^{\mathrm{s}}$ after the hours named; those at Sitka, $19^{\mathrm{m}} 5^{\mathrm{s}}$ after ; those at Lake Athabasca, $5^{\mathrm{m}} 1^{\mathrm{s}}$ after; and those at Fort Simpson, $14^{\mathrm{m}} 33^{\mathrm{s}}$ before the hours named.

It is not to be expected that the observations of periods so short as five months and two months should exhibit the diurnal law of mean disturbance with much regularity, unless at stations peculiarly liable to that effect. Lake Athabasca and Fort Simpson are such stations, and here the law is strongly marked: the corresponding periods at the other stations are introduced for strict comparison ; but we must take a longer period, as in the next table (p. 178), to which I have added Philadelphia, ${ }^{1}$ to make their characteristics in this respect fully evident.

The year 1843 was selected by Dr. Lloyd for this investigation, on account of its freedom from great disturbances: ' on the grounds that the number which denotes the frequency of the irregular changes, in consequence, bearing a larger proportion to that which denotes their magnitude, any regular law to which they are subject will be more readily apparent.' The observations of 1843 at Toronto, as compared with those of the following year, show that this absence of disturbance was equally characteristic at that station. The observations at Pliladelphia and Sitka belong principally to the year 1844 , the period examined being the twelve months commencing October 1843.

It appears by the following table, that at each of the American stations the mean disturbance of the declination has its lowest value in the afternoon, and that this is succeeded by a maximum at 9 or 10 p.ar. So far, therefore, the diumal law at all the stations agrees with that deduced by Dr. Lloyd from his own observations, namely, that 'during the day, i.c. from 6 a.м. to 6 p.м., the mean disturbance is nearly constant; at 6 p.m. it begins to increase, and arrives at a maximum a little after 10 p.m.' When, however, Dr. Lloyd proceeds to state, 'it then decreases.

[^69]with the same regularity, and arrives at its constant day value at about 6 A.m.,' he describes a feature which is evidently not characteristic of all the stations, and is more completely wanting as we proceed to the north.

Table XXII.
Mean disturbance of the declination for twelve months at Philadelphia and Sitka, and for two years at Toronto; to which are added, for comparison, the corresponding values given by Dr. Lloyd for the year 1843, from the observations at Dublin. ${ }^{1}$

$\begin{aligned} & \text { Local } \\ & \text { mean time } \end{aligned}$	Dublin	Philadel.	Toronto		Sitka
			1843	1844	
Midnight	\square	$2^{\prime}, 22$	1',78	$3^{\prime}, 03$	$4^{\prime}, 57$
13	2,81	2,10	2,06	2,72	4,95
14		2,29	1,91	2,62	4,07
15	2,52	2,29	1,92	2,89	4,35
16		1,91	1,83	2,85	4,93
17	2,16	2,10	2,17	2,72	3,51
18		2,06	2,25	2,53	3,03
19	1,93	2,20	1,82	3,08	2,86
20		2,00	1,67	2,28	2,91
21	1,89	2,19	1,98	2,07	2,65
22		1,91	1,91	2,08	3,14
23	1,93	1,93	1,85	2,14	2,83
Noon		1,81	1,93	1,88	2,60
1	2,17	1,65	1,83	1,80	2,40
2		1,76	1,66	1,92	2,22
3	2,11	1,77	1,70	1,83	2,38
4	-	1,74	1,83	1,76	2,45
5	2,12	1,67	1,73	1,96	2,52
6	,	1,62	2,05	1,87	2,71
7	2,44	1,86	1,87	1,95	3,82
8	-	2,52	2,56	3,35	4,50
10	3,47	-2,61	2,43	3,56	4,05
10	-	2,59	2,44	3,38	4,42
11	4,07	1,88	2,32	2,88	3,67

The following are the arithmetical means of the values for each quadrant of the twenty-four hours :

Table XXIII.

	Midn. to 5 a.m.	6 to 11 a.m.	Noon to 5 p.m.	$6 \mathrm{p} . \mathrm{m}$. to midn.
Dublin	2',50	$1^{\prime}, 92$	2',14	3',32
Philadelphia	2,15	2,05	1,73	2,18
Toronto $\{1813$	2,11	1,91	1,78	2,28
Toronto 1844	2,80	2,36	1,86	2,83
Sitka .	4,40	2,90	2,43	3,86

It will be seen that at Philadelphia and Toronto, the mean value from midnight to 5 A.m. is somewhat less than in the quadrant preceding midnight; but the difference is materially less in proportion than at Dublin: at Sitka, the highest value is after midnight. Arranging in like manner the values for the shorter periods in Tables I. and II., we find the same

[^70]general law, but with a greater excess after midnight at Lake Athabasca than at Sitka, and a yet greater at Fort Simpson than at Lake Athabasca.

Table XXIV.
Mean disturbance of declination, October 1843 to February 1844.

	Midn. to 5 a.m.	6 to 11 a.m.	Noon to 5 p.m.	6 p.m. to midn.
	$1^{\prime}, 57$	$1^{\prime}, 66$		$1^{\prime}, 64$
Toronto \quad.	.	3,48	2,86	$1^{\prime}, 76$
Sitka $\quad .24$	2,79			
Lake Athabasca.	9,33	6,88	4,40	6,48

Table XXV.
Mean disturbance of declination, April and May 1844.

	Midn. to 5 a.m.	6 to 11 a.m.	Noon to 5 p.m.	$6 \mathrm{p} . \mathrm{m}$. to midn.
Toronto	3',45	2,93	1',79	2',89
Sitka	6,53	2,65	2,54	3,68
Fort Simpson	17,85	15,88	5,68	11,15

The observations of April and May at Sitka include nine days which were not days of observation at Toronto, and fourteen which were not days of observation at Fort Simpson, where there were also a few omissions in the six-hourly period commencing at midnight: this may account for the somewhat lower relative value in that quadrant as compared with the one preceding it, at the latter station, than at Sitka.

The above comparison exhibits a marked difference in the state of disturbance prevailing after midnight at Sitka, Lake Athabasca, and Fort Simpson, as compared with the lower stations. Of the six hours preceding midnight, however, only $9^{\mathrm{h}}, 10^{\mathrm{h}}$, and 11^{h} are distinguished for a high value of this quantity at any of the stations: it will perhaps be better therefore to compare these three hours with $3^{\mathrm{h}}, 4^{\mathrm{h}}$, and 5^{h} A.m. particularly; hours to which no prominent interest was assigned by any of the authorities quoted above. I have here taken, in each instance except Dublin, the value of $\sqrt{\frac{\Sigma\left(\Delta^{2}\right)}{N}}$: it is also necessary to substitute at Dublin some of the values of 1843 for the corresponding months of 1844 ; but this will not affect the comparison. Taking the same periods at all the stations, we have the following results:

Table XXVI.

	five winter montios		two spring montir	
	9-11 p.m.	3-5 a.m.	$9-11 \mathrm{pm}$	3-5 a.m.
Dublin	$2^{\prime}, 70$	$1^{\prime}, 75$	$5^{\prime}, 27$	2,71
Philadelphia .	1,85	1,47	2,17	2,46
Toronto .	2,35	1,59	3,51	4,17
Sitka . .	3,10	2,80	3,43	7,50
Lake Athabasca	8,89	11,63	-	-
Fort Simpson	-	-	12,89	21,57

Again: for the whole year, we have
Table XXVII.

	$9-11 \mathrm{pm}$.	3-5 a.m.	Ratio
Dublin	3,77	2',34	As 1,61: 1
Philadelphia .	2,38	2,11	1,13: 1
Toronto $\{1843$	2,39	1,98	1,21: 1
(1844	3,13	2,82	1,11: 1
Sitka	4,19	4,28	0,97: 1

The highest values would be given at Sitka by the hours $12^{\mathrm{h}}, 1^{\mathrm{h}}, 2^{\mathrm{h}}$ A.m. both in the winter period and on the whole year, and by $2^{\mathrm{h}}, 3^{\mathrm{h}}, 4^{\mathrm{h}}$ A.m. in the two spring months, which appears to show an earlier epoch for the second reaction than at the other two northem stations; but probably the reduction of another year's observations, at least, will be necessary to determine this point.

It appears then that while at Philadelphia and Toronto, as at Dublin, the mean disturbance of the declination presents bat one maximum, which occurs at 9 or 10 P.m., yet there is not, even at these stations, a complete agreement. At Dublin, the value decreases regularly after 11 p.s. ; at Philadelphia and Toronto, it decreases to a materially less degree. Proceeding to Sitka, we find a maximum about the same hour, but it is succeeded by another at 1 A.m., and the average value is somewhat greater for the hours succeeding than for those preceding midnight. At Lake Athabasca we have still a maximum about 10 p.m., but it is decidedly inferior to a second maximum at 5 a.m. or thereabouts. Lastly, at Fort Simpson, without losing the first maximum, we find it exceeded in a still higher ratio by the second. Hence we are led to the conclusion that, as regards the declination, there are two classes of irregular influences, or two reactions during the night, succeeding the regular influences which have acted during the day. Of these, the one which produces a maximum value of disturbance at 9 or 10 р.м. appears to be miversal, but it is nowhere important enough to modify in any marked degree the character of the mean diurnal curves of this element, which is chiefly impressed, at all save the most northem stations, by the direct or regular action of the day. The other class, or that which produces a second maximum of disturbance after midnight (when the direct action of the smis on the opposite hemisphere), is not universal, but comes into operation, on the American continent, more and more effectively as we approach the magnetic pole; until at last its energy is such as to mask the effect of the more feeble regular influences, and to determine almost entirely the apparent character of the mean diurnal changes.

I have hitherto referred to the disturbance of the declination alone, that being the element which has been most generally studied, and which alone has given a marlied maximmo disturbance at 9^{h} or 10^{h} P.n. The
horizontal force and the inclination, at Lake Athabasca and Fort Simpson, equally support the conclusion that the canses producing disturbance at these stations come into operation chiefly towards morning, and concur in showing 4^{h} or 5^{h} A.m. to be the period of their greatest effect. The result is that the principal inflexion in the mean diumal curve for each element occurs at that hour also, giving to these curres an apparent character differing most remarkably from those described elsewhere.

It can scarcely be necessary to point out the great comparative amount of the mean disturbance shown at the two most northern stations. The effect of this greater prevalence of disturbance is strikingly shown in the great amount of the mean daily range of the elements. Taking the difference between the highest and lowest scale reading of each day for the daily range, and $\sqrt{\frac{\sum\left(\Delta^{2}\right)}{N}}$ for the mean daily range, we hare the following remarkable series:-

Table XXVIII.

-	fice winter moxtha		two eprrse montis	
	Declination	Hori ontal force	De. lination	Horizoutal force
At Philadelphia .	$7^{\prime}, 1$, 00132 X	11^{\prime}, ${ }^{\text {a }}$,00157 X
Toronto	8,5	, 00242 X	14,0	,00357 X
Sitka .	9,8	, c 0389 S	16,2	,0044 X
Lake Athabasca.	30,4	,02768 X	-	-
Fort Simpson	-	-	63,1	,04182 X

Bearing in mind that Sitka, which differs so widely from Fort Simpson and agrees so nearly with Toronto, is 460 geographical miles distant from the former and 2,250 from the latter, ${ }^{1}$ we have here a striking proof how little magnetical phenomena are governed by geographical relations.

There is one other circumstance connected with the disturbance of the declination which I cannot forbear to mention. I mean the remarkable influence of the seasons upon the mean diurnal curve of this quantity; the great augmentation which the principal maximum receives at the time of the equinoxes, and the much lower values which prevail at both the solstices. In the next table are shown the values of the mean disturbance of declination at Philadelphia, Sitka, and Toronto for one year, according to the astronomical seasons. ${ }^{2}$ Thus February, March, A pril, form
${ }^{1}$ Sitka: Latitude $57^{\circ} 3^{\prime}$; longitude $9^{\mathrm{h}} 2,2{ }^{\mathrm{m}} \mathrm{W}$. from Greenwich. It may be necessary to mention that the unifilar magnets at Philadelphia and Sitka were of 2 feet in length ; at Toronto, of 14 inches; and at the two northern stations, of 3 inches only. The eflect of the dimensions or the inertia of magnets upon the anomt of their movements, and upon the mean diurnal curves deduced from those morements, is a subject which requires further investigation (as much in 1883 as it did in 1851).
${ }^{2}$ This arrangement was adopted after actual trial of the more usual division according to meteorological seasons, which did not exhibit the characteristic songht, in such strong contrast.
the group for the vernal equinox, and so on : each quantity is the value of $\sqrt{\frac{\Sigma\left(\Delta^{2}\right)}{N}}$; the whole reduced to arc. (See Table XXIX.)

Although it would be improper to unite in one mean seasons so dis. similar as midwinter and midsummer, it will be remarked that they differ much less than might have been expected ; and that the difference in the epoch of greatest mean disturbance is very small, in proportion to the difference in the length of the day at these seasons. The means for the year have been already given.

It seems natural to connect this remarkable prevalence of disturbance at the equinoxes with the well-known fact that the aurora borealis is most developed at the same seasons. I do not mean to offer one fact as explaining or accounting directly for the other; but believing the latter to be an entirely atmospheric phenomenon, subject to periodic laws, both diurnal and annual, to suggest that both may be related to a common cause. The magnetical phenomena seem to show that there are two classes of forces, characterised by determining the equatorial end of a magnet to the east and west respectively, and that these are severally brought into operation by the presence and absence of the sun above the horizon: when these forces are nearly balanced, owing to the equal length of day and night, or his position near the equator, then disturbances prevail; when either of them greatly preponderates, as happens alternately in winter and summer, there is a less disposition to disturbance. As regards the elements of magnetism, the whole diurnal change then derives its peculiar character principally from the forces proper to the day or night, as the case may be: as regards the aurora, considered as a visible electric discharge, it would seem an inference that the causes producing it are diminished by the same circumstance.

In the foregoing tables, the differences have been summed without regard to their direction or sign. If we sum separately the squares of the differences which have the + and - signs, or which indicate deviations to the east and west of the supposed mean position for the hour, it is found that at every season, and at each of the stations, the maximum of mean disturbance at 9^{h} or 10^{h} P.m. is the result of easterly movements. Such is also the case with the maximum at 5 A.m. at the two most northern stations. The westerly means, on the contrary, are the largest during the day; and there are indications of a maximum value under this sign at 6 or 7 A.m., but less regular, and apparently more affected by the seasons than the other.
TABLE XXIX．
Mean disturbance of the declination at three American Stations，arranged to show the effect of the seasons upon this quantity．

$\begin{aligned} & \text { 曾 } \\ & \text { 客 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 曾 } \\ & \text { 总 } \end{aligned}$		
	$\frac{\tilde{a}}{2}$		
		\circ $\stackrel{8}{\square}$ $\stackrel{y}{4}$	
		$\begin{aligned} & \text { 感 } \\ & \text { En } \end{aligned}$	
		$\frac{f_{1}^{2}}{8}$	
		菏	
	$\begin{aligned} & \frac{1}{2} \\ & \frac{2}{2} \\ & \stackrel{y}{4} \\ & \hline \end{aligned}$	管	
		\％	
		宽	
	$\frac{a}{2}$	范	
		发	
		诺	

APPENDIX IV.

BASE ANGLES EMPLOYED, AND ANGLES RECORDED AT stations of observation not already given in FULL in TABLES' SII. TO XIV. OF THE 'pilllosopllical TRANSACTIONS FOR 1840.'

Table XXX.
Fo, 's Needle B, $q=0.000113$.

	Th.	$20 \mathrm{gr} . \quad 25 \mathrm{gr}$.				$3 \cdot 0 \mathrm{gr}$.		3.5 gr.		$4 \cdot \mathrm{gr}$		Force
Norway	88.0	24		31		38				56		
Nornay	69.0	24	5.2	30	58.4	38	$39 \cdot 8$			55	$36 \cdot 9$	
Mean	78.5	24	$23 \cdot 7$	31	$8 \cdot 5$	38	$41 \cdot 1$	46		56		1.8677
Cumberland House	58.0	24	32.9	30	54.7	38	21\%	45	$0 \cdot 3$	55		1.8678
	54.0		24.5	30	53.2	37	49.51	45	$0 \cdot 2$	56		$1 \cdot 8684$
Great Devil's Port.	74.0	24	45.4	30	57 \%	38	$56 \cdot 3$	46	16.1	56	$30 \cdot 1$	1.8651
Snake Rapid	52.0	25	$15.6{ }^{1}$	31	15.9	38	$33 \cdot 2$	46	$24 \cdot 1$	50		$1 \cdot 8$ ¢\% 60
Lake a la Crosse .	69\% 0	$2 \pm$	45.9	31	5.5	39	29.8		31.7	57	$1 \cdot 4$	$1 \cdot 8494$
,	61.0		$4+2$	31	$7 \cdot 7$	39	26.8		33.0	57		$1 \cdot 8479$

Table XXXI.
Fo.c's Neetle C, $q=\cdot 000175$.

	Tin.	1.5 gr.	${ }^{2} \cdot 0$	5 g	$3 \cdot 0$	3.5 gr .	Force.
Fort Whinam							
	66.4	$19 \quad 53 \cdot 4$	$27 \quad 16 \cdot 2$	3.18	4235.9	- -	
	$61 \cdot 9$	$19 \quad 37 \cdot 6$	26448	$3427 \cdot 8$	4256.3	- -	
Mean	6.4 .1	1945.5	$27 \quad 0.5$	3423.3	4246.1	-- ---	1.8601
Fort Coulonge	57.4	$1952 \cdot 4$	$27 \quad 11 \cdot 1$	$\begin{array}{ll}35 & 2 \cdot 1\end{array}$	$43 \quad 31 \cdot 2$		$1 \cdot 8384$
P'ort au Croix	$46 \cdot 9$	2014.0	$27 \quad 12 \cdot 1$	$3452 \cdot 3$	430.8	- -	$1 \cdot 8323$
Rat Portage	73.0	19595	26566	3442.5	43009	- -	1.851 .4
Fort Garry	68.9	$19 \quad 57 \cdot 1$	26579	3443.3	4256.3	- -	$1 \cdot 8529$
	60.0	$19 \quad 53 \cdot 1$	$27 \quad 1$ 1.4	3428.5	4309	- -	$1 \cdot 8525$
L. Winnipeg, 7th .	$70 \cdot 2$	$\begin{array}{lll}19 & 14.9\end{array}$	$\begin{array}{ll}26 & 8.1\end{array}$	$\begin{array}{llll}33 & 37 \cdot 4\end{array}$	413880	- -	$1 \cdot 9080$
10th	74.0	$\begin{array}{ll}19 & 34.9 \\ 19\end{array}$	$2635 \cdot 1$	$3420 \cdot 6$	$42 \quad 54 \cdot 3$	- -	1.8721
Norway House	81.6	$\begin{array}{ll}19 & 22 \cdot 9\end{array}$	26112	$\begin{array}{ll}34 & 4.0\end{array}$	42456	- -	1.8737
York Factory	77.9	$18 \quad 54 \cdot 1$	2.573	$3248 \cdot 1$	4051.3	- -	1.9392
Windy Lake.	69%	$2030 \cdot 5$	$2638 \cdot 6$	$35018 \cdot 1$	42458		1.8741

${ }^{1}$ Rejected. These values difler slightly from those in the text, which were inadvertently reduced with the former base value for Norway House, viz. 1.873.
${ }^{2}$ Tork Factory. This value of the force is at variance with all the other determinations, and probrally due to some impedinent to the free motion of the needle.

Table XXXI.-(continued).

	Th.	1.5 gr	$2 \cdot 0 \mathrm{gr}$	2.5 gr .	3.0 gr .	3.5 gr .	Force
Readjustment.						- ,	
	56.5	$19 \quad 25 \cdot 7$	$26 \quad 56 \cdot 1$	$34 \quad 8 \cdot 1$	$42 \quad 28 \cdot 0$	$52 \quad 34 \cdot 1$	-
Norway House	57.5	$1938 \cdot 7$	$26 \quad 52 \cdot 6$	34160	$42 \quad 50 \cdot 6$	$52 \quad 31 \cdot 8$	
		-	-	-	423114	-	
					12		
Mean	$57 \cdot 0$	$1932 \cdot 2$	$26 \quad 54.5$	$3412 \cdot 0$	$4242 \cdot 1$	$52 \quad 33.0$	$1 \cdot 8677$
Old Norway House	$64 \cdot 2$	$1947 \cdot 3$	$26 \quad 41 \cdot 2$	$3446 \cdot 2$	$42 \quad 30 \cdot 9$	$5234 \cdot 0$	1.8642
L. Winnipeg, 14th	64.9	$1956 \cdot 2$	$\begin{array}{lll}26 & 53 \cdot 1\end{array}$	$3411 \cdot 0$	$4310 \cdot 6$	-	1.8576
Grand Rapid	66.0	$1956 \cdot 4$	$27 \quad 3 \cdot 8$	$\begin{array}{ll}34 & 3 \cdot 3\end{array}$	$4239 \cdot 4$	-	1.8608
Cross Lake	$62 \cdot 6$	$1947 \cdot 9$	$26 \quad 42 \cdot 7$	$\begin{array}{lll}35 & 3 \cdot 8\end{array}$	$42 \quad 52.5$	-	$1 \cdot 8552$
Cumberland House	$66 \cdot 3$	$20 \quad 25 \cdot 6{ }^{1}$	$27 \quad 7 \cdot 8$	$3447 \cdot 8$	${ }_{43}^{43} \quad 33 \cdot 6$	$52 \quad 49.5$	$1 \cdot 8510$
	$52 \cdot 4$	$19 \quad 24 \cdot 4$	$\begin{array}{lll}26 & 54 \cdot 6\end{array}$	$3347 \cdot 5$	$43 \quad 11 \cdot 1$	$52 \quad 35 \cdot 8$	$1 \cdot 8689$
Beaver Lake	$63 \cdot 7$	19 34.5	$27 \quad 50.5$	$3 \pm 33 \cdot 6$	$44 \quad 10 \cdot 6$	$52 \quad 26 \cdot 3$	$1 \cdot 8398$
P. des Epinettes	$56 \cdot 1$	19 25.8	$\begin{array}{lll}27 & 13 \cdot 3\end{array}$	$3435 \cdot 6$	$43 \quad 16 \cdot 3$	-	$1 \cdot 8549$
Frog Portage	$59 \cdot 1$	$19 \quad 57 \cdot 5$	$27 \quad 33 \cdot 6$	3 ± 35	$43 \quad 40 \cdot 7$	-	1-8462
Little Rock P.	$67 \cdot 6$	$18 \quad 14 \cdot 2$	$25 \quad 195$	$3145 \cdot 3$	$\begin{array}{llll}39 & 59 \cdot 6\end{array}$	$48 \quad 25 \cdot 6$	$1 \cdot 9842$
Pine Portage	$62 \cdot 6$	$19 \quad 54 \cdot 5$	$\begin{array}{llll}26 & 36 \cdot 9\end{array}$	$\begin{array}{lll}32 & 44.2\end{array}$	$43 \quad 35 \cdot 5$	$\begin{array}{llll}53 & 39 \cdot 8\end{array}$	$1 \cdot 8519$
Snake Rapid	$54 \cdot 6$	$19 \quad 31 \cdot 3$	$26 \quad 38 \cdot 1$	$3344 \cdot 9$	$43 \quad 38 \cdot 3$	$53 \quad 23 \cdot 9$	$1 \cdot 8641$
The stations following are rejected for loss of magnetism.							
Port Sonnante	56.0	$1951 \cdot 9$	$27 \quad 49 \cdot 9$	$35 \quad 40 \cdot 9$	$45 \quad 13 \cdot 3$	$5512 \cdot 7$	$1 \cdot 8070$
Isle a la Crosse	$51 \cdot 1$	$20 \quad 1 \cdot 0$	$\begin{array}{ll}28 & 13.0\end{array}$	$35 \quad 5 \cdot 0$	$\begin{array}{ll}45 & 2 \cdot 7\end{array}$	$\begin{array}{lll}54 & 31 \cdot 7\end{array}$	$1 \cdot 7999$
	$73 \cdot 1$		$28 \quad 18 \cdot 1$	$35 \quad 50 \cdot 5$	$44 \quad 52 \cdot 4$	$5429 \cdot 0$	$1 \cdot 7962$
Buffalo Lake	$51 \cdot 3$	$20 \quad 8 \cdot 8$	$2810 \cdot 0$	$35 \quad 4 \cdot 4$	$44 \quad 29 \cdot 0$	$54 \quad 205$	$1 \cdot 7861$
River de la Loche.	67.9	$20 \quad 28 \cdot 1$	$28 \quad 45 \cdot 4$	$\begin{array}{lll}35 & 57.7\end{array}$	$46 \quad 21 \cdot 7$	$55 \quad 55 \cdot 6$	$1 \cdot 8021$
Port de la Loche	$57 \cdot 0$	$20 \quad 3 \cdot 6$	$28 \quad 1 \cdot 6$	$\begin{array}{lll}35 & 35 \cdot 5\end{array}$	$46 \quad 24 \cdot 0$	5516.5	$1 \cdot 7954$
Clearwater River	$42 \cdot 7$	$20 \quad 29 \cdot 7$	$28 \quad 1 \cdot 3$	$\begin{array}{lll}35 & 15 \cdot 5\end{array}$	$45 \quad 5 \cdot 1$	$54 \quad 21.7$	$1 \cdot 7992$
Pierre au Calumet	$64 \cdot 4$	19 52•3	27 32.2	$34 \quad 12 \cdot 3$	$43 \quad 18.9$	$53 \quad 25 \cdot 7$	$1 \cdot 8440$
Pointe Brulée	$43 \cdot 0$	$20 \quad 25 \cdot 1$	2741.7	$\begin{array}{lll}34 & 6.8\end{array}$	$43 \quad 49 \cdot 9$	53 26.0	1.8184
Fort Chipewsan	$44 \cdot 3$	$2040 \cdot 1$	$29 \quad 0 \cdot 0$	$35 \quad 35 \cdot 0$	43 42.5	$\begin{array}{llll}57 & 38 \cdot 9\end{array}$	$1 \cdot 7769$
-	$41 \cdot 1$	$20 \quad 27 \cdot 1$	$28 \quad 1.7$	$35 \quad 35 \cdot 7$	$43 \quad 34 \cdot 8$	$57 \quad 26 \cdot 8$	1.7966

Table XXXII.
For*s Needle A, as cmployed in 1844, and referred to Furt Chipewyan as base.

1844		Th.	2.5 gr.	3.0 gr .	$3 \cdot 5 \mathrm{gr}$.	4.0 gr .	5.0 gr .	Force
		-	\bigcirc,	- ,	\bigcirc,	\bigcirc,	- ,	
July 3	Fort Chipewsan	$53 \cdot 0$	$27 \quad 32 \cdot 2$	$\begin{array}{ll}34 & 19 \cdot 3\end{array}$	$40 \quad 24 \cdot 0$	$48 \quad 41.7$	$56 \quad 56 \cdot 2$	$1 \cdot 8346$
, 12	Fort Vermilion	$69 \cdot 0$	$27 \quad 20 \cdot 1$	$33 \quad 51 \cdot 3$	$40 \quad 7 \cdot 1$	$4741 \cdot 8$	$5610 \cdot 7$	$1 \cdot 86.42$
,, 23	Fort Dunvegan	$54 \cdot 9$	$27 \quad 6 \cdot 6$	$3317 \cdot 8$	40 15\%	$47 \quad 57 \cdot 1$	56	$1 \cdot 8565$
Aug. 19	Edmonton	$38 \cdot 1$	$\begin{array}{lll}27 & 197\end{array}$	$3347 \cdot 2$	$40 \quad 3 \cdot 0$	47 21-5	$55 \quad 26 \cdot 0$	$1 \cdot 8558$
, 30	Cumberland House	$61 \cdot 6$	$26 \quad 395$	$3256 \cdot 8$	$38 \quad 590$	$46 \quad 247$	$54 \quad 6 \cdot 2$	$1 \cdot 9035$

${ }^{1}$ These angles are rejected.
${ }^{2}$ This value being considerably in excess of the truth, as estallished by the whole body of observations, has been disregarded. On the supposition that the free movement of the needle was prevented by rust on the axle, I changed it and tried others, but their performance being very unsatisfactory, the same axle partially repolished was replaced. Hence the impossibility of referring the observations of 18.44 before Aurust 30, to Toronto, or those taken subsequently to Athabasca. The series ends here.

Table XXXIII.
Fox's Needle C as employed in 1844 and referred to Fort Chipewyan as base.

1844		Th.	1.5 gr.	2.0 gr .	$2 \cdot 5 \mathrm{gr}$.	3.0 gr .	3.5 gr .	Force
			- '	- ,	- '	- '	- ,	
July 3	Fort Chipewyan	$59 \cdot 1$	$20 \quad 48 \cdot 6$	$28 \quad 40 \cdot 8$	$36 \quad 21 \cdot 7$	46184	$57 \quad 1 \cdot 9$	$1 \cdot 8346$
,, 12	Fort Vermilion	$48 \cdot 7$	$20 \quad 44 \cdot 9$	$28 \quad 55 \cdot 6$	$\begin{array}{lll}36 & 14\end{array}$	$46 \quad 2 \cdot 3$	$\begin{array}{lll}56 & 39 \cdot 8\end{array}$	$1 \cdot 8365$
,, 23	Fort Dunvegan	$75 \cdot 5$	20 30-5	$28 \quad 39 \cdot 6$	$\begin{array}{lll}36 & 29.7\end{array}$	$46 \quad 26 \cdot 4$	$57 \quad 0 \cdot 3$	$1 \cdot 8450$
Aug. 19	Edmonton	$48 \cdot 4$	$20 \quad 36 \cdot 8$	$\begin{array}{ll}28 & 28 \cdot 7\end{array}$	36	46	56 56.5	$1 \cdot 8391$
, 30	Cumberland House	$58 \cdot 3$	$20 \quad 19 \cdot 1$	$28 \quad 19 \cdot 1$	$\begin{array}{llll}35 & 42 \cdot 8\end{array}$	$45 \quad 43 \cdot 4$	55 $\quad 29 \cdot 6$	$1 \cdot 8646$

The unsatisfactory condition both needles, A and C, were in by this time, accounts for a consistent difference between their results in the last two tables, C always giving slightly lower values than A; but, as pointed out in the text, pp. 35, 36, they concur with the absolute determinations in proving the values of the force in this region, as formerly published, to have been about 0.04 on the relative scale, or 0.30 on the absolute scale, too low.

Both needles were observed again at Norway House on September 7, and at Toronto on December 14, 1844, but not at any intermediate points. The result of this comparison was:-

which is rather less than the value given in the text, p. 104, viz. $1 \cdot 8677$, or $14 \cdot 136$, but in good general agreement with it.

The fitness of either Toronto, Fort William, Norway House, or Fort Chipewyan, to be taken as base stations, each of them being situated on the northern margin of a large fresh-water lake, is a question which did not engage any attention at the dates of these observations. The choice was dictated by convenience alone. There are some reasons for thinking such a geographical position exceptionally liable to abnormal values of one or other element; this is very observable at Fort Chipewyan. A greater multiplication of observations is necessary to determine the local errors which remain, with other questions, for a more deliberate investigation hereafter.

STATIONS.

A LIST OF STATIONS OF OBSERVATION, AND OF OTHER PLACES NAMED, ARRANGED ALPHABETICALLY.

> The qualifications-Fort, House, Portage, Lake, River-are generally disregarded. The place will be found by its distinguishing appellation. Thus: Portage des Deux Rivières under D; Grand Rapid under G.

	Page				Page
Little Lake	. 162	Pas, The	.	-	. 123
, River .	- 64,123	Peace River	.	.	. 141
" Rock Portage	- . 129	", Falls of	-	-	. 143
Loche, de la River	. 133	Pelican Portage	-		- 164
", ," Portage	. 135	Pembina River	-	136,	8, 149
Long Portage .	. 108	Penetanguishene	-	.	53,65
Louisville, No. 43 .	51	Philadelphia, No. 12	.	-	- 52
		Pic, The	- 74
		Pierre au Calumet.	.	-	. 137
Mackintosh Island	. 119	Pinawa River		,	- 91
Mackenzie's River	- 158	Pine Island			. 136
Magnetic Island	. 108	,, Islands	-		. 123
Malign River	. 120	" Island Lake	.		. 125
Mammoth Cave, No. 42	- 54	", Portage	.	-	. 127
Manhattanville, No. 8 .	- 52		.		. 135
Manitou Island, S., No. 21	. 159	", or Pin Portage	.	.	. 131
Mattawa	- 64	Pins, Pointe au .	-	-	- 70
Mauvais Portage	- 81	Pitt, Fort .	,	-	. 152
Michipicoton.	- 72	Poplar Island	-	-	- 142
Missinnipi River	- 128	Porphyry Point	.	-	- 77
Mississaqui River	- 68	Prairie Portage	.	.	- 82
Methy Portage	- 135	,, River de la	.	-	147
,, River.	. 134	Prescott, No. 33	-	-	54
Montreal, No.	- 52	Primean Lake	-	-	. 132
Moosehill Creek	. 152	Princeton, No. 15	-	-	- 52
Morgan's Rock Portage	- 110	Providence, No. 9.	.	-	- 52
Morts, Portage des	- 83	," Point	.	-	. 142
,, les Petits		Puante Lac 147
Mossy Point .	- 99, 100				
, Portage .	. 109				
Mountain Portage	. 129	Quebec, No. 1	-	-	- 52
Muddy Lake	- 122				
		Rapid River	.	-	. 128
Nelson Fiver	. 117	Rapide Sans Sault	.	.	. 159
Newhaven, No. 16	- 53	Rat Portage .	,	,	- 89
Niagara, No. 27	- 53	Red River	.	-	- 98
, Falls, No. 36	- 53	Red Willow River	-	-	. 136
Nipessing Lake	- 64	Repulse Bay 116
Norman, Fort	, 159	Resolution, Fort	.	.	. 163
Norway House	. 101	Ricollet's Fall		-	- 65
", Old	100, 118	Roche Capitaine Por		.	63
		Rochester, No. 28.	.	-	- 53
Otter Island	- 73	Round Turn	-	-	. 123
,, Portage	- . 129				
Oxford House	- 107	St. Anne's			163
," Lake.	- 107	St. John's, No. 6	-	-	- 52
Oxhead	96	St. Marie .	.	-	- 69
		Salt River . .			- 162
Paddle River	- 149	Sand-fly Lake		-	18.
Painted Stone Portage	105-6	Sandy l'oint			16:

INDEX.

Afternoon preferable for observations of variation, 11
Ashe, Capt. E. D., R.N., 59
Aurora, remarkable one, 106
Basaltic formations on Lake Superior, 77
Base Stations-
Cincinnati, 56
Toronto, 56, 165
Fort William, 78
Norway House, 102
Fort Chipewyan, 138-143
Bayfield, Captain, R.N., his charts, 5, 69
Belanger, J. B., Franklin's companion living in 1877, 3
Bell, Dr. R., 99, 100, 101, 117
Bermuda, Dip at, 55
Blackfeet Indians, 141, 153, 157
Blakiston, Lieut., 49, 111, 112, 155
Boundary commissions, 89, 94
Cavadian stations, 51
Chronometers, 4, 6, 100
Circumpolar expeditions, 1883,116
Coles, Mr. J., 145, 147
Collimator magnets, 7
Comparison of force, 37, 140
Compass observations, 7
— sluggishness of, 77

- trial of pivots, 101

Corrections, see Sabine
DIP circle, 15
Dip, errors of, 16, 35
Diurnal movements, 9,10
Erman's pole of cold, 161
Fleming, Mr. Sandford, 128
Force, absolute, 37

- relative total, 17
- - horizontal, 32
- combination of values. 38

Force, comparison of results, 37

- local excess of, $48,55,96,97,123$, 129, 137
- local defect of, 73-76, 152, 155

Fossils noticed, 119, 144
Fox's Dip circle, 22
Compared with Gambey, 29
Needles, 30
Formula and example, 32
Franklin, Sir J., his route maps, 5, 89, 131

- his observations of Dip, 49
———— variation, 50, 115
Frozen soil, depth of, 161
Gamber's Dip circle, 14
———accident to, 89
Gauss, his memoir, 112
Geological survey, 55, 72, 80
Greenwich observations, 17
Haig, Capt., 36, 151
Herriott, Mr., 121
Hind, Prof. H. Y., 156
Horizontal force, 32, 34, 41, 126
Humboldt, A. von, 56
Inclinometer induction, 42, 160
Indians, danger from, 151, 153, 155
Instruments, list of, 1
Intensity, force of maximum, 36,48
Isodynamic lines, correction of, 35
Journals, loss of them, xviii, 141
Kewaydin, 86
King, Mr. W. F., 150, 152, 154
Kingston, Canada W., 55
Kingston, Prof., 70
Lake Winnipeg, depth of, 99
Latitudes, 3
Lee, Lieut., United States Army, 69
Lightuing, unusual, 88

Lloyd's station needles, 17
— - - accident to, 89

- formula and example, 2 L
— induction inclinometer, 42,44, 160
Local anomalies, value of two instruments, examples of, on the St . Lawrence, 29, 60-6 ; Ottawa, 61; French River, 29, 65; Lake Superior, $29,73,76,77$; canoe route and Wimnipeg River, 80, 86, 90, 91 ; Lake Wimipeg, $90,96,97,98$, 119 ; canoe route to York factory, 104, 105, 108; Saskatchewan, 153; Little River, 123; English
River, 129 ; Athabasca River, 137
Locke, Dr., his observations, 70
Longitude, how ascertained, $4-5$
- corrections of, 150,154

Lovering, Prof., 106
Maclean, Mr. J., 60, 158
Magnetometers, Weber's, 1, 51

- improved transportable, 1

Magnets, loss of force, 2, 126, 130, 132
Maps employed, 5
Maps of Geological Survey, 65, 108, 111
Meridians, a list of, 8,59
Michigan State Survey, 69
Mission Stations, $99,123,151,163$
Names, their corruption, 3
Needles, Lloyd's Static, 17

- Fox's, 22

Neumayer, Dr. G., his experiences in Victoria, 8

Palisades on Peace River, The, 145
Palliser, Capt. J., 111
Peace River-little known, 141
— - Falls of, 142
Pole, magnetic, xviii, 47
Prairie, elevation of, 147
Probable errors, 34, 35, 39
Rae, Dr. J., 70, 112, 115, 116
Recrpitulation of results, 166
Relative force, origin of scale, 56

- - observations of, 126

Results, brief review of, 46
Richardson, Sir John, 116

Riddell, Lieut. C. J. B., 1
Rowand, Mr., 151
Sabine, Sir E., cognizant of proceeding's, Preface, xi.

- his conclusions as to the Magnetic Focus, 47
- correction of some errors, 31, 55, $62,63,70,76,122,125,143,150$, 151
- his observations, 57

Sanderson, Major, R.E., 94
Secular changes, 49
Shocks, magnetic, 12, 14
Simpson, Sir G., Prof., 61, 79, 93

- Thomas, 159, 161, 163

Smith, Mr. Archibald, 47
Snow shoes, journey on, 158
Stations, See List appended
Stinking Lakes, 147
Sulphur springs, 136
Surveys of the Dominion of Canada, $5,150,152,154$

Taylor, Surveyor, II.B. Co., 101
Temperature extremes experienced, 158
Term days, magnetical, 13, 73, 90, 103, 146
Thompson, II.B. Co. Surveyor, 89
Tiarks, Dr. J. L., 89
Times of vibration, probable errors of, 35
Toronto, base station, 56, 166, 186

- vibrations of survey magnets at, 66

Treaty of Ghent, 87,89
United States, stations in, 51
Unsurveyed comutries, difficulties of, 2

Vibrations, examples of, 33, 130
Victoria, Dr. Neumayer's survey of, 8
Tiscous Lake of Franklin, 82
Voyareurs dying out, 3
Weigilit of observations, 41
Winnipeg Lake, form of, 96
Woolwich, base observations at, 16
Youngmusbind, Lieut., 51, 115

Magnetic Charts.

The subjoined Tables contain the data for portions of the lines laid down on the accompanying maps, which are dependent upon observations subsequent to the writer's magnetic survey, and not given in the text; but belong to the same geographical region and the same general epoch.

I.

Observations of the late Captain R. W. Haig, R.A., in British Columbia, 18581861, 'Phil. Trans.' 1864. They have been reduced to the date 1844.

No.	Lat.	Long.	Dip		Force		Declination		
			As Onserved	Corr. +	$\underset{\text { Observed }}{\text { As }}$	$\begin{gathered} \text { Corr. } \\ + \end{gathered}$	As Observed	Corr	
				$10 \cdot 5$	13. ${ }^{6} 03$	1) 102	$\bigcirc{ }_{21}^{1} 58 \mathrm{E}$.	2s	Rijorted.
1	4526	12327	7134	105	$13 \cdot 103$				
2	$49 \quad 1$	12212	72×2	$11 \cdot 0$	$13 \cdot 366$	"	2180	98	
3	$47 \quad 7$	12225	7040	10.4	$13 \cdot 116$	"	$21 \quad 23$	30	
4	$49 \quad 2$	1220	724	$10 \cdot 4$	$13 \cdot 285$	",	2137	27	
5	$49 \quad 2$	12123	7231	$10 \cdot 3$	$13 \cdot 180$	"	-	-	
6	4538	1228	6917	$9 \cdot 8$	13.0.3\%	"	$20 \quad 5$	27	
7	4535	12049	6942	$9 \cdot 8$	$13 \cdot 151$	"	$20: 7$	27	
8	4540	12049	$70 \quad 5$	$9 \cdot 8$	$13 \cdot 003$,"	18 it	$\because 7$	
9	4910	120	7237	$9 \cdot 6$	$13 \cdot 226$	"	$\underline{2}$	$\because 7$	
10	497	$120 \quad 0$	-	-	-	-	2150	27	
11	490	1200	7227	$3 \cdot 5$	$13 \cdot 321$	"	2244	$\because 7$	
12	$49 \quad 0$	11924	-	-	-	-	$\underline{2} 14$	$\because 7$	
13	$49 \quad 0$	11828	7249	$9 \cdot 1$	$13 \cdot 272$	"	2017	2.)	
14	4840	1185	7242	$9 \cdot 1$	$13 \cdot 397$	"	21.10	2.5	
15	480	11745	724	$9 \cdot 0$	13:343	"	2128	2\%	
16	48 9	11644	7235	50	18370	"	2116	25	
17	4822	11628	7246	90	$13 \cdot 391$,	2251	25	
18	4841	11619	738	$9 \cdot 0$	13.469	"	$\because 211$	\because	
19	4822	11521	7248	$9 \cdot$	13.48.5	",	2216	25	
20	4840	11517	$\begin{array}{ll}73 & 7\end{array}$	9.0	$13 \cdot 113$	"	2324	2.5	
21	4857	1158	7323	$9 \cdot 0$	13.472	"		-	
2:	(4) 0	11445	7381	$9 \cdot 0$	$1: 3 \cdot 197$,"	2352	$\because 2$.	
23	491	1141	7343	$9 \cdot 0$	$13 \cdot 287$,	2312	25	

II.

Obsercations in Iludson's Bay by Captain T. E. L. Moore, R.N., taken in the eourse of a voyaye in the Iludson's Bay Company's ship to Moose Factory in 1846 (Sabine in 'Phil. Trans.' 1872). No correction has been applied for two and a half years' lifference of date.

A few observations by Dr. Tae are also inserted, and here note corrections to Table XVI. p. 116: Churehill Lat. $55^{\circ} 43^{\prime} 50^{\prime \prime}$. Knapps Bay Dip $86^{\circ} 18^{\prime} 8$. The next observation, by Rac`s Journal, was on July 18, and north of Knapps Bay. Dele. ,, 2.

III.

About 180 stations are marked in the United States, and a few names inserted to assist their identification; but as the nbservations were given in full by Sabine in 1846, it appears umecessary to repeat them. The intensities were ehiefly determined ly Dr. Locke between the years 1835 and 1845; the Dips observed by Locke, Loomis, Graham, and others in the same years.

please do not remove CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: ${ }^{1}$ Sabine's Contributions to Terrestrial Magnetism, No. VII. Philosonhieal Trausactions, 1846, p. 237 ; id. No. XIII. Mhil. Trans. 1872, p 35.3.

[^1]: ${ }^{1}$ See Treasury Letter, November 13, 1847.
 ${ }^{2}$ See Sabine ${ }^{\circ}$ Contributions, No. IN. Phil. Trans. 1849, and No. XIII. Ihil. Trars. 1872.

[^2]: ${ }^{1}$ Namely, my assistant, Bombr. W. Henry; I had no other.

[^3]: ${ }^{1}$ See Magnetical and Meteorological Observations at Lake Athabasca and Fort Simpson, and at Fort Confidence, 1855, p. 144. Messrs. Lottin and lravais, in their account of the aurora as observed by the Commission Scientifique du Nord, in Sweden, 1838-40, affirm it ouly of the successive phases of the phenomenon.
 ' Cette succession non interrompue' (i.e. the continuity of auroras through successive days) ' n 'empêche pas l'aurore boréale de rester soumise aux lois de sa période diurne, du moins relativement à quelques-unes de ses manifestations. Ainsi l'apparition des ares, des rayons ou des plaques, lheure où les lueurs se colorent, atteignent leur maximum"d'eclat, "ondulent ou palpitent, l'heure de leur disparition, etc., ne sont point réglées au hasard ; la période diurne des phases successives est très-évident, et celle des perturbations magnétiques qui les accompagnent ne l'est pas muins' (p. 546.) This rery valuable report was not known to me, if indeed it was published in 1843. (There is no date of publication on the title-page.)

[^4]: ${ }^{1}$ The writer has long since modified this opinion.

[^5]: ${ }^{1}$ They were incorporated by M. Kuppfer in the Ammaires, 1841-45.

[^6]: ${ }^{1}$ Lamont's Magnotische Fiarten ron Deutschland und Bayern. München, 1854.
 ${ }^{2}$ Phil. Tians. 1873.

[^7]: ${ }^{1}$ Phil. Trans. 1864.
 ${ }^{2}$ Appendix No. 9 , by Charles A. Schott.-Terrestrial Magnetism ; Collection of Results for Declination; Dip and Intensity, from observations made by the United States Coast and Geodetic Survey between 1833 and July 1882. Washington, 1883.

[^8]: ${ }^{1}$ The Latitudes and Longitudes are Mr. Schott's, and correct some of thoso at pl 53 and 166

[^9]: ${ }^{1}$ Thus, Qu'appelle, on the river of that name, having been degraded $t n$ ' Q. Apple,' has bean recently rechristened Regina.

[^10]: ${ }^{1}$ The steel parts of this watch had very possibly become magnetised : the same cause may have contributed to the irregularity of the chronometers.
 ${ }^{2}$ Annual Leport of the Deprartment of the Interior, Ottawa, 1880 .

[^11]: ${ }^{1}$ I have lately found a high-priced poxtable azimuth compass 2° in error.

[^12]: ${ }^{1}$ See Lloyd's .Miscellaneous Popers, 1877, p. 194, and Fifth Report of the British Association, 1836.

[^13]: ${ }^{1}$ Full particulars rospecting these coefficients will be found in Phil. Trans., 1846.
 ${ }^{2}$ I find a subse quent query against this value, whichappears too lit le. It does not enter into any result.

[^14]: ${ }^{1}$ Sabine by inadrertence included in his Table XXII two stations, Williamsburg and St. Helens, that are out of place. Williamsburg, April 20 , belongs to an earlier series, St. Helens appears in Tables XXI and XXII, with two different results for the same date, riz. Table XXI, April 25 , intensity $1 \cdot 812$, which also belongs to the earlier series, Table XXII, April 25 , intensity $1 \cdot 831$, the mean of which appears to be given as 1.821 in Table XXVII. The later date should be April 28 , whent the counterpoise was shifted from the last hole to the centre hole, to diminisl the angle, and both stations should be taken out of 'lable JXII.

[^15]: ${ }^{1}$ 'I have continually observed that the magnetic axis of a given needle is liable to frequent variations, even without its having been retouched.'-Sturgcon's Amals of Electricity, iii. p. 297.

[^16]: ${ }^{1}$ Table NLIX in Phil. Trans., 1846.

[^17]: ${ }^{1}$ Not 46° tis': as formerly printed, Table XVI, 1846.

[^18]: ${ }^{1}$ Experiments to determine the Figure of the Earth, 1825, p. 481.

[^19]: ${ }^{1}$ See Magnetical Instructions, \&̌., by Lieutenant O. J. B. Riddell, R.A. London, 1844.

[^20]: ${ }^{1}$ See Tables XVI, XVII, Phil. Trans., IE4', p. 207.

[^21]: ${ }^{1}$ The total force at Toronto in 1844 has been assumed throughout this work as $13 \cdot 896$; it was in $1860,13 \cdot 811$, a decrease of 0.085 in $16 \frac{1}{2}$ years, or at the rate of $0 \cdot 0051$ per annum. Where Captain Haig found a total force of $13.60 \mathrm{in} \mathrm{1860}$, it was about $13 \cdot 68$ in 1844 ; and where his force of $18 \cdot 23$ is found, it was then I3:31 or 1.76 nearly. Thit. Trans., 1864, p. 191, and Pl. III.
 ${ }^{2}$ See Stations CCV, CCVII, CXOVII, and Stations CCJXXXIV, CCLXXXV, and CCLXXXVII.

[^22]: ${ }^{1}$ Phil. Trans., 1846, p. 2×7.
 2 If we tako the resu t of 1813 ouly, at Fort William, to comrare with the

[^23]: ${ }^{1}$ Nos. CCXXIX and CCXCV.
 ${ }^{2}$ Besides the monthly term daye, on Oct. 26, for 6h.; Decem. 1, $8 h$.; Jan. 4, 10h.; Jan. $5,10 h . ;$ April 16, 14h., and for many shorter periods on other occasions.

[^24]: ${ }^{1}$ See Observations made at the Magnetical and Meteorological Observatory at Trinity College, Dublin, under direction of the Rev. Humphrey Lloyd, D.D., vol. i. p. 64. Longmans, 1865.
 ${ }^{2}$ See Irocecdings of the Royal Irish Academy, vol. ii. p. 210.
 ${ }^{3}$ Athabasca Observations, 1855, p. 41.

[^25]: ${ }^{1}$ See a note on the theory of the instrument in the Appendix.
 ${ }^{2}$ Proceedings Royal Irish Academy, 1842, and P'apers on Physical Ecience, 1-77, p. 225.

[^26]: ${ }^{1}$ So given also by Sabine, p. 251, but erroneously marked on his map 14.88.

[^27]: ${ }^{1}$ Scientific Mcmoirs, vol. ii. 1838.
 ${ }^{2}$ See the Lev. S. J. Perry's 'Magnetic Survey of Belgium,' Phil. Troms., 1873.

[^28]: 1 These are the revised values of 1857 , in which slight corrections were applied to the moments of inertia of the rings ; see 'Toronto,' vol. iii., p. cri.
 ${ }^{2}$ Phil. Trans., 1872, p. 355.
 ${ }^{3}$ See Appendix to Franklin's Serond Enpedition, p. cxxuv.

[^29]: 1 The poles of Needle C were reversed at Sorel
 3 Observation incomplete. An observation, a

 6 This observation was made by Dr, Bartlett, with a needle by Gambey.

[^30]: ${ }^{1}$ See Mr. Vennor's Reports in the Crcological Survey of Canada, 1869, p. 143, and $i b .1870$, p. 309.

 * Although not connected with the magnetic surver of ('anada, I take this

[^31]: ${ }^{1}$ Phil. Trans., 1827, and Brit. Assoc., VIIth Report.
 ${ }^{2} I b .1870$. The secular change in 17 years, at the rate of increase which prevailed from 1857 to 1862 , would have been +0021 , or about 00013ϕ. It has decreased since 1862.

[^32]: ${ }^{1}$ Formerly published $77^{\circ}-21^{\prime} 1$, and omitted from Lieut.-Colonel Sabine's map as a station of local disturbance, which indeed it is, but there was a clerical error in the dip given.

[^33]: ${ }^{1}$ Previously published $75^{\circ} 16^{\prime}$ by a clerical error, and omitted by Sabine from his map.

[^34]: ${ }^{1}$ Toronto, lat. $48^{\circ}: 39^{\prime} \cdot 4$; long. $5{ }^{\mathrm{h}} 17^{\mathrm{m}} 33^{\mathrm{s}}$; above the sea, 342 ft . See p. 56.
 ${ }^{2}$ The angle of deflection with $2 \cdot 5$ grains gives the anomalous value $1 \cdot 888$, and I reject it.

[^35]: ${ }^{1}$ I am indebted to the courtesy of His Excellency the Governor of the State of Nichigan for a Report from Professur O. B. Wheeler, of the Lake Superior Surver, on the latest determination of longitude as laid down on the United States Chart of Lake Superior, No. 1, 1872, and reduced to my station on the British side. These American corrections, as remarked above, have been adopted on the new Chart of Lake Superior, issued by the 1 Idmiralty in 1878 , No. 320, of which I have only become aware since these pages were written.
 ? See Appendix 1 of Aprendix ('C of the Report of the Chief Encincer, Michigan. 1874.

[^36]: ${ }^{1}$ See abstracts and results of magnetical and meteorological observations at the Magnetical Observatory, Toronto, Canada, from 1841 to 187]. [By Professor G. T. Kingston], Toronto, 1875.
 ${ }^{2}$ Sabine includes an observation by Dr. Locke taken on the American side. He makes the mean $\operatorname{dip} 7 \tau^{\circ} 24^{\prime} \cdot 9$, and the force $13 \cdot 98$. It is wrongly inserted on the map as $77^{\circ} 5^{\prime} \cdot 3$.
 ${ }^{3}$ From two values of $\frac{m}{\lambda}$ by deflection, the unhappy event above referred to having interrupted the observation. The result is given half weight.

[^37]: ${ }^{1}$ See Geology of Canada, 1863, p. 702.
 : This observation was previously published as $3^{\circ} 49^{\prime}$ E., but on re-examination proves to have been reduced without applying the equation of time, which is $16^{\mathrm{m}} 11^{\text {s }}$, hence a large error.

[^38]: ${ }^{1}$ Sce p. 11 for the movements observed.

[^39]: ${ }^{1}$ By some mistake, for which 1 am not responsible, the dip at this station was formerly pubiished as $78^{\circ} 24^{\prime}$, giving the anomalous and probably impossible force 15.89. The correct value given above is nearly the same as on Otter lsland (LVIII), another disturbed locality.

[^40]: ${ }^{1}$ This result is from two sights only.
 ${ }^{2}$ On perceiving the discrepancy between needles 1 and 2 , the instrument, which had been dismounted, was set up again, and observation repeated. As the value given in 1843 is confirmed by Fox A, which gave the approximate dip $78^{\circ} 8^{\prime} 7$, I can only attribute the diflerence in 1844 to a change of the element. In each of the eight positions of needle 1 the readings on the second observation are less than they were in the first.
 ${ }^{3}$ This depends on the value 1.8790 assigned to Norway Inouse, to which it is referred.

[^41]: ${ }^{1}$ signifies that the bar was vibrated in a stirrup.

[^42]: 1 Sie I'rnf. Slleine Nicholson, M.D., in the Quarterly Journal of the Geoloprical sompty, 1873, p. 19.

[^43]: * See his aftidavit sworn in New York, November 18, 1825. American Journal of Science, rol. xr.

[^44]: ${ }^{1}$ See Geological Survey, 1878. My lunars have been examined and refluced by Mr. Coles, R.Ci.S.

[^45]: Total force in relative measure 1.8360
 " " in absolute measure
 $1: 806$

[^46]: ${ }^{1}$ Several pages of my notebook in August have been entirely obliterated by the leaves having been wetted. I give the observations as formerly published.

[^47]: ${ }^{1}$ As formerly published, the original entries are illegible.
 ${ }^{2}$ Tide Lovering on the periodicity of the Aurora Borealis, in Memoirs of the American Academy, 1868, p. 135.

[^48]: ${ }^{1}$ Sabine, in Proceedings of Royal Society, vol. ix. 1859.

[^49]: ${ }^{1}$ Narrative of an Erpedition to the Shores of the Arctic Sea. London: 1850.
 ${ }^{2}$ Translated by Mrs. Sabine and revised by Sir John Herschel. Taylor's Scientijic Memoirs, vol. ii. p. 184. 1841.

[^50]: ${ }^{1}$ So Dr. Bell. On the Dominion map it is in about $94^{\circ} 50^{\prime}$.
 ${ }^{2}$ By the map, about $59^{\circ} 80^{\prime}$.
 ${ }^{3}$ By the latitude given, this must be the entrance, not the outlet, coing by the current.

[^51]: ${ }^{1}$ Sabine omitted the observation.

[^52]: ${ }^{1}$ Formerly given 1.871, which is incorrect.

[^53]: ${ }^{1}$ Not as previously published, $\stackrel{\mathrm{s}}{5} \because 2235$.

[^54]: ${ }^{2}$ Report addressed to the Hon, the Minister of Public Works, Ottawa, 1879.

[^55]: ${ }^{1}$ It is not noted which side of the horizon-glass faced the sun.
 ${ }^{2}$ Evident loss of magnetism.
 ${ }^{3}$ Franklin has an observation for longitude in 1826 , ' in the narrows between Sandtly and Snake Lake, $106^{\circ} 4 t^{\prime} 36^{\prime \prime}$, by which this place seems intended, but it does not fit the map, which was drawn on observations of 1819 only.

[^56]: ${ }^{1}$ Needle C had evidently lost marnetism by some accident since the 4 th instant, and continued to give values of the force materially below those given both by needle A and by the mathod of vibration, until my arrival at Fort Chipewyan. The difference is about 2 per cent. I have continned, however, to insert the values actually found for the sake of the confirmation they afford to the exceptional force at Station CCDIV (Pierre au C'alumet), as assigned by needle A. See p. 140.

[^57]: 1 The relative force formerly assigned was 1.811 , the observations with Fox A being referred to Toronto as base, which is inadmissible, and those with Fox 0 omitted altogether. They are here referred to Fort Chipewyan (COXNLI), with base value $1 \cdot 8: 346$.

[^58]: ${ }^{1}$ Formerly published $118^{\circ} 19^{\prime}$. The observations have been recalculated for me by Mr. Coles, of the Royal Geographical Society.

[^59]: ${ }^{1}$ Fommerly given as $1 \cdot 80!$ (see note to Station CCXLII).

[^60]: 1 This was frequently done, with the general result that the prairie in this region must be about 1,800 feet above the sea; but the weather was very unsettled all the time.

[^61]: ${ }^{1}$ Letter to Lient.-Culonel Saline.

[^62]: 'Franklin's longitude of Carlton IIonse was $106^{\circ} 12^{\prime} 41^{\prime \prime}$. It has retained that position on the maps until recently; Mr. King, of the Canada Surver Department, has, however, found it to be $106^{\circ} 32^{\prime}$, consequently all longitudes formerly referred to that station have required correction (see CCLXXXV).
 ${ }^{2}$ Formerly published $24^{\circ} 16^{\prime}$ E. by a clerical error since detected.

[^63]: ${ }^{1}$ Formerly published $1 \cdot 809$ (see for explanation Station CCLLII).

[^64]: 1 The difference between the first and second obserration this day was traced to the theodolite, which was out of order. The same remark applies to the observations at Edmonton; for want of any indication which result is correct I take

[^65]: ${ }^{1}$ Standard Meridians and Parallels, 1878.
 ${ }^{2}$ See Observations made at the Maynetical and Metcorological Observatory at St. IIelena, vol. ii. p. cv.

[^66]: Equivalent in relative foree to $1 \cdot 8041$.

[^67]: ${ }^{1}$ Erman's Travels in Siberia, ii. p. 367, ('unfer* tramlation, l\& 18.

[^68]: ${ }^{1}$ Rejected. A tinned iron inkstand had been left on the stand too near the needle.
 ${ }^{2}$ Three distances of deflection employed.

[^69]: 1 Magnetical and Metearological Observations at Girard College, by Vr. . . I) Bache, $1840-45$.

[^70]: ${ }^{1}$ Transactions of the Royal Irish Academu. vol. xxii., pt. i.

